目录
- 说明
- 配置环境
- 此节说明
- 代码
说明
本博客代码来自开源项目:《动手学深度学习》(PyTorch版) 并且在博主学习的理解上对代码进行了大量注释,方便理解各个函数的原理和用途
配置环境
使用环境:python3.8
平台:Windows10
IDE:PyCharm
此节说明
此节对应书本上10.7节 此节功能为:文本情感分类:使用循环神经网络
由于此节相对复杂,代码注释量较多
代码
# 本书链接https://tangshusen.me/Dive-into-DL-PyTorch/#/
# 10.7 文本情感分类:使用循环神经网络
# 注释:黄文俊
# E-mail:hurri_cane@qq.com
import collections
import os
import random
import tarfile
import torch
from torch import nn
import torchtext.vocab as Vocab
import torch.utils.data as Data
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DATA_ROOT = "D:/Program/Pytorch/Datasets"
from tqdm import tqdm
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def read_imdb(folder='train', data_root="D:/Program/Pytorch/Datasets/aclImdb"):
data = []
for label in ['pos', 'neg']:
folder_name = os.path.join(data_root, folder, label)
for file in tqdm(os.listdir(folder_name)):
with open(os.path.join(folder_name, file), 'rb') as f:
review = f.read().decode('utf-8').replace('\n', '').lower()
# .lower()将字符串中的所有大写字母转换为小写字母,并返回一个新字符串
data.append([review, 1 if label == 'pos' else 0])
random.shuffle(data)
return data
train_data, test_data = read_imdb('train'), read_imdb('test')
# 基于空格进行分词
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def get_tokenized_imdb(data):
"""
data: list of [string, label]
"""
def tokenizer(text):
return [tok.lower() for tok in text.split(' ')]
return [tokenizer(review) for review, _ in data]
# 过滤掉了出现次数少于5的词
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def get_vocab_imdb(data):
tokenized_data = get_tokenized_imdb(data)
counter = collections.Counter([tk for st in tokenized_data for tk in st])
return Vocab.Vocab(counter, min_freq=5)
vocab = get_vocab_imdb(train_data)
print('# words in vocab:', len(vocab))
# 通过截断或者补0来将每条评论长度固定成500
# 本函数已保存在d2lzh_torch包中方便以后使用
def preprocess_imdb(data, vocab):
max_l = 500 # 将每条评论通过截断或者补0,使得长度变成500
def pad(x):
return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))
tokenized_data = get_tokenized_imdb(data)
features = torch.tensor([pad([vocab.stoi[word] for word in words]) for words in tokenized_data])
labels = torch.tensor([score for _, score in data])
return features, labels
# 创建数据迭代器
batch_size = 128
# 此处将原有的64改为了128,因为如果是64的话会报错:
# RuntimeError cuDNN error CUDNN_STATUS_INTERNAL_E
train_set = Data.TensorDataset(*preprocess_imdb(train_data, vocab))
test_set = Data.TensorDataset(*preprocess_imdb(test_data, vocab))
# 训练数据集和测试数据集的尺寸调整为一致,均包含长度为500的字符串以及字符串对应的标签值(0/1)
train_iter = Data.DataLoader(train_set, batch_size, shuffle=True)
test_iter = Data.DataLoader(test_set, batch_size)
for X, y in train_iter:
print('X', X.shape, 'y', y.shape)
break
print('#batches:', len(train_iter))
# len(train_iter)表示这个迭代器按照小批量batch_size来取需要多少次能取完所有样本
# 10.7.2 使用循环神经网络的模型
class BiRNN(nn.Module):
def __init__(self, vocab, embed_size, num_hiddens, num_layers):
super(BiRNN, self).__init__()
self.embedding = nn.Embedding(len(vocab), embed_size)
# bidirectional设为True即得到双向循环神经网络
self.encoder = nn.LSTM(input_size=embed_size,
hidden_size=num_hiddens,
num_layers=num_layers,
bidirectional=True)
# 初始时间步和最终时间步的隐藏状态作为全连接层输入
self.decoder = nn.Linear(4*num_hiddens, 2)
def forward(self, inputs):
# inputs的形状是(批量大小, 词数),因为LSTM需要将序列长度(seq_len)作为第一维,所以将输入转置后
# 再提取词特征,输出形状为(词数, 批量大小, 词向量维度)
embeddings = self.embedding(inputs.permute(1, 0))
'''
embedding运算其实就是根据输入的inputs来索引嵌入层的词向量
'''
# rnn.LSTM只传入输入embeddings,因此只返回最后一层的隐藏层在各时间步的隐藏状态。
# outputs形状是(词数, 批量大小, 2 * 隐藏单元个数)
outputs, _ = self.encoder(embeddings) # output, (h, c)
# 连结初始时间步和最终时间步的隐藏状态作为全连接层输入。它的形状为
# (批量大小, 4 * 隐藏单元个数)。
encoding = torch.cat((outputs[0], outputs[-1]), -1)
outs = self.decoder(encoding)
return outs
# 创建一个含两个隐藏层的双向循环神经网络。
embed_size, num_hiddens, num_layers = 100, 100, 2
net = BiRNN(vocab, embed_size, num_hiddens, num_layers)
# 10.7.2.1 加载预训练的词向量
glove_vocab = Vocab.GloVe(name='6B', dim=100, cache=os.path.join(DATA_ROOT, "glove"))
# 本函数已保存在d2lzh_torch包中方便以后使用
def load_pretrained_embedding(words, pretrained_vocab):
"""从预训练好的vocab中提取出words对应的词向量"""
embed = torch.zeros(len(words), pretrained_vocab.vectors[0].shape[0]) # 初始化为0
oov_count = 0 # out of vocabulary
for i, word in enumerate(words):
try:
idx = pretrained_vocab.stoi[word]
embed[i, :] = pretrained_vocab.vectors[idx]
except KeyError:
oov_count += 1
if oov_count > 0:
print("There are %d oov words." % oov_count)
return embed
net.embedding.weight.data.copy_(load_pretrained_embedding(vocab.itos, glove_vocab))
net.embedding.weight.requires_grad = False # 直接加载预训练好的, 所以不需要更新它
# 10.7.2.2 训练并评价模型
lr, num_epochs = 0.01, 5
# 要过滤掉不计算梯度的embedding参数
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()
d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)
# 定义预测函数
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def predict_sentiment(net, vocab, sentence):
"""sentence是词语的列表"""
device = list(net.parameters())[0].device
sentence = torch.tensor([vocab.stoi[word] for word in sentence], device=device)
# a = net(sentence.view((1, -1)))
'''
通过debug可以发现,通过这个网络计算出来的标签估计值,其实是没有经过归一化的
并且会出现某个概率为负数的情况
'''
label = torch.argmax(net(sentence.view((1, -1))), dim=1)
return 'positive' if label.item() == 1 else 'negative'
predict1 = predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'great']) # positive
print(predict1)
predict2 = predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'bad']) # negative
print(predict2)
predict3 = predict_sentiment(net, vocab, ['As','far','as','I','am','consider','this', 'movie', 'is', 'not', 'bad']) # negative
print(predict3)
'''
通过自己尝试的例子可以发现,这个算法并没有那么智能
'''
print("*" * 50)