内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;
java.lang.OutOfMemoryError,是指程序在申请内存时,没有足够的内存空间供其使用,出现OutOfMemoryError。
原因主要包括:
- JVM内存过小。
- 程序不严密,产生了过多的垃圾。
在程序上的体现为:
- 内存中加载的数据量过于庞大,如一次从数据库取出过多数据。
- 集合类中有对对象的引用,使用完后未清空,使得JVM不能回收。
- 代码中存在死循环或循环产生过多重复的对象实体。
- 启动参数内存值设定的过小。
内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。
memory leak会最终会导致out of memory
内存泄露会最终会导致内存溢出。
相同点:都会导致应用程序运行出现问题,性能下降或挂起。
不同点:1) 内存泄露是导致内存溢出的原因之一,内存泄露积累起来将导致内存溢出。2) 内存泄露可以通过完善代码来避免,内存溢出可以通过调整配置来减少发生频率,但无法彻底避免。
Java内存泄露根本原因是什么呢?长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是java中内存泄露的发生场景。
1、静态集合类引起内存泄露:
像HashMap、Vector等的使用最容易出现内存泄露,这些静态变量的生命周期和应用程序一致,他们所引用的所有的对象Object也不能被释放,因为他们也将一直被Vector等引用着。
Static Vector v = new Vector(10);
for (int i = 1; i<100; i++)
{
Object o = new Object();
v.add(o);
o = null;
}//
在这个例子中,循环申请Object 对象,并将所申请的对象放入一个Vector 中,如果仅仅释放引用本身(o=null),那么Vector 仍然引用该对象,所以这个对象对GC 来说是不可回收的。因此,如果对象加入到Vector 后,还必须从Vector 中删除,最简单的方法就是将Vector对象设置为null。
2、Map集合更改key值
public class Test1 {
private static final int SEM_MAX = 10;
public static void main(String[] args) {
Set<Person> hashSet = new HashSet<Person>();
Person p1 = new Person("a",3);
Person p2 = new Person("b",5);
Person p3 = new Person("c",7);
hashSet.add(p1);
hashSet.add(p2);
hashSet.add(p3);
p3.setAge(99);
hashSet.remove(p3);
System.out.println(hashSet.size()); //3
hashSet.add(p3);
System.out.println(hashSet.size()); //4
}
}
class Person implements Comparable<Person>{
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public int compareTo(Person o) {
// TODO Auto-generated method stub
if(age==o.age)
return 0;
else if(age > o.age) return 1;
else return -1;
}
@Override
public int hashCode() {
// TODO Auto-generated method stub
return name.hashCode()+age;
}
public void setAge(int age) {
this.age=age;
}
}
3、监听器
在java 编程中,我们都需要和监听器打交道,通常一个应用当中会用到很多监听器,我们会调用一个控件的诸如addXXXListener()等方法来增加监听器,但往往在释放对象的时候却没有记住去删除这些监听器,从而增加了内存泄漏的机会。
4、各种连接
比如数据库连接(dataSourse.getConnection()),网络连接(socket)和io连接,除非其显式的调用了其close()方法将其连接关闭,否则是不会自动被GC 回收的。对于Resultset 和Statement 对象可以不进行显式回收,但Connection 一定要显式回收,因为Connection 在任何时候都无法自动回收,而Connection一旦回收,Resultset 和Statement 对象就会立即为NULL。但是如果使用连接池,情况就不一样了,除了要显式地关闭连接,还必须显式地关闭Resultset Statement 对象(关闭其中一个,另外一个也会关闭),否则就会造成大量的Statement 对象无法释放,从而引起内存泄漏。这种情况下一般都会在try里面去的连接,在finally里面释放连接。
5、单例模式
如果单例对象持有外部对象的引用,那么这个外部对象将不能被jvm正常回收,导致内存泄露。
不正确使用单例模式是引起内存泄露的一个常见问题,单例对象在被初始化后将在JVM的整个生命周期中存在(以静态变量的方式),如果单例对象持有外部对象的引用,那么这个外部对象将不能被jvm正常回收,导致内存泄露,考虑下面的例子:
class A{
public A(){
B.getInstance().setA(this);
}
....
}
//B类采用单例模式
class B{
private A a;
private static B instance=new B();
public B(){}
public static B getInstance(){
return instance;
}
public void setA(A a){
this.a=a;
}
//getter...
}
6、Stack出栈
import java.util.Arrays;
public class Stack {
private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;
public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];
}
public void push(Object e) {
ensureCapacity();
elements[size++] = e;
}
public Object pop() {
if (size == 0)
throw new EmptyStackException();
return elements[--size];
}
private void ensureCapacity() {
if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);
}
}
原因分析
上述程序并没有明显的错误,但是这段程序有一个内存泄漏,随着GC活动的增加,或者内存占用的不断增加,程序性能的降低就会表现出来,严重时可导致内存泄漏,但是这种失败情况相对较少。
代码的主要问题在pop函数,下面通过这张图示展现
假设这个栈一直增长,增长后如下图所示
当进行大量的pop操作时,由于引用未进行置空,gc是不会释放的,如下图所示
从上图中看以看出,如果栈先增长,在收缩,那么从栈中弹出的对象将不会被当作垃圾回收,即使程序不再使用栈中的这些队象,他们也不会回收,因为栈中仍然保存这对象的引用,俗称过期引用,这个内存泄露很隐蔽。解决:
public Object pop() {
if (size == 0)
throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null;
return result;
}
Java内存泄漏的排查案例
jps命令格式为:
jps [ options ] [ hostid ]
使用命令如下:
使用jps:jps -l
使用ps:ps aux | grep tomat
找到需要监控的ID(假设为20954),再利用“虚拟机统计信息监视工具:jstat”监视虚拟机各种运行状态信息。
jstat命令格式为: jstat [ option vmid [interval[s|ms] [count]] ]
使用命令如下: jstat -gcutil 20954 1000
意思是每1000毫秒查询一次,一直查。gcutil的意思是已使用空间站总空间的百分比。
这台服务器的新生代Eden区(E,表示Eden)使用了28.30%(最后)的空间,两个Survivor区(S0、S1,表示Survivor0、Survivor1)分别是0和8.93%,老年代(O,表示Old)使用了87.33%。程序运行以来共发生Minor GC(YGC,表示Young GC)101次,总耗时1.961秒,发生Full GC(FGC,表示Full GC)7次,Full GC总耗时3.022秒,总的耗时(GCT,表示GC Time)为4.983秒。
1)把堆dump下来再用MAT等工具进行分析,但dump堆要花较长的时间,并且文件巨大,再从服务器上拖回本地导入工具,这个过程有些折腾,不到万不得已最好别这么干。
2)更轻量级的在线分析,使用“Java内存影像工具:jmap”生成堆转储快照(一般称为headdump或dump文件)。
jmap命令格式: jmap [ option ] vmid
使用命令如下: jmap -histo:live 20954