最近,在对公司容器云的日志方案进行设计的时候,发现主流的ELK或者EFK比较重,再加上现阶段对于ES复杂的搜索功能很多都用不上最终选择了 Grafana 开源的 Loki 日志系统,下面介绍下Loki的背景。

背景和动机

当我们的容器云运行的应用或者某个节点出现问题了,解决思路应该如下:

loki elk 区别_Pod


我们的监控使用的是基于 Prometheus 体系进行改造的,Prometheus 中比较重要的是 Metric 和 Alert,Metric 是来说明当前或者历史达到了某个值,Alert 设置 Metric 达到某个特定的基数触发了告警,但是这些信息明显是不够的。 我们都知道,Kubernetes 的基本单位是 Pod,Pod 把日志输出到 stdout和 stderr,平时有什么问题我们通常在界面或者通过命令查看相关的日志,举个例子:当我们的某个 Pod 的内存变得很大,触发了我们的 Alert,这个时候管理员,去页面查询确认是哪个 Pod 有问题,然后要确认 Pod 内存变大的原因,我们还需要去查询 Pod 的日志,如果没有日志系统,那么我们就需要到页面或者使用命令进行查询了:

loki elk 区别_Pod_02

如果,这个时候应用突然挂了,这个时候我们就无法查到相关的日志了,所以需要引入日志系统,统一收集日志,而使用 ELK 的话,就需要在 Kibana 和 Grafana 之间切换,影响用户体验。所以 ,loki 的第一目的就是最小化度量和日志的切换成本,有助于减少异常事件的响应时间和提高用户的体验。

ELK 存在的问题

现有的很多日志采集的方案都是采用全文检索对日志进行索引(如ELK方案),优点是功能丰富,允许复杂的操作。但是,这些方案往往规模复杂,资源占用高,操作苦难。很多功能往往用不上,大多数查询只关注一定时间范围和一些简单的参数(如host、service等),使用这些解决方案就有点杀鸡用牛刀的感觉了。

loki elk 区别_数据_03

因此,Loki的第二个目的是,在查询语言的易操作性和复杂性之间可以达到一个权衡。

成本

全文检索的方案也带来成本问题,简单的说就是全文搜索(如ES)的倒排索引的切分和共享的成本较高。后来出现了其他不同的设计方案如:

OKlog(https://github.com/oklog/oklog),采用最终一致的、基于网格的分布策略。这两个设计决策提供了大量的成本降低和非常简单的操作,但是查询不够方便。因此,Loki的第三个目的是,提高一个更具成本效益的解决方案。

整体架构

Loki的架构如下:

loki elk 区别_数据_04


不难看出,Loki 的架构非常简单,使用了和 Prometheus 一样的标签来作为索引,也就是说,你通过这些标签既可以查询日志的内容也可以查询到监控的数据,不但减少了两种查询之间的切换成本,也极大地降低了日志索引的存储。Loki将使用与Prometheus相同的服务发现和标签重新标记库,编写了pormtail,在 Kubernetes 中 promtail 以 DaemonSet 方式运行在每个节点中,通过 Kubernetes API 等到日志的正确元数据,并将它们发送到 Loki。下面是日志的存储架构:

loki elk 区别_elk日志收集系统 linux_05

读写


日志数据的写主要依托的是 Distributor 和 Ingester 两个组件,整体的流程如下:

loki elk 区别_Pod_06

Distributor


一旦 promtail 收集日志并将其发送给loki,Distributor就是第一个接收日志的组件。由于日志的写入量可能很大,所以不能在它们传入时将它们写入数据库。这会毁掉数据库。我们需要批处理和压缩数据。 Loki通过构建压缩数据块来实现这一点,方法是在日志进入时对其进行gzip操作,组件ingester是一个有状态的组件,负责构建和刷新chunck,当chunk达到一定的数量或者时间后,刷新到存储中去。每个流的日志对应一个ingester,当日志到达Distributor后,根据元数据和hash算法计算出应该到哪个 ingester 上面。

loki elk 区别_数据库_07


此外,为了冗余和弹性,我们将其复制 n(默认情况下为3)次。

Ingester

Ingester 接收到日志并开始构建 chunk:

loki elk 区别_elk日志收集系统 linux_08


基本上就是将日志进行压缩并附加到 chunk 上面。一旦 chunk “填满”(数据达到一定数量或者过了一定期限),ingester 将其刷新到数据库。我们对块和索引使用单独的数据库,因为它们存储的数据类型不同。

loki elk 区别_数据_09

刷新一个chunk之后,ingester 然后创建一个新的空 chunk 并将新条目添加到该 chunk中。

Querier


读取就非常简单了,由 Querier 负责给定一个时间范围和标签选择器,Querier查看索引以确定哪些块匹配,并通过 greps 将结果显示出来。它还从 Ingester 获取尚未刷新的最新数据。 对于每个查询,一个查询器将为您显示所有相关日志。实现了查询并行化,提供分布式grep,使即使是大型查询也是足够的。

loki elk 区别_Pod_10

可扩展性


Loki 的索引存储可以是 cassandra/bigtable/dynamodb,而 chuncks 可以是各种对象存储,Querier 和 Distributor 都是无状态的组件。对于 ingester 他虽然是有状态的但是,当新的节点加入或者减少,整节点间的 chunk 会重新分配,已适应新的散列环。而Loki 底层存储的实现 Cortex 已经在实际的生产中投入使用多年了。有了这句话,我可以放心的在环境中实验一把了。