大数据时代,大多数企业的架构必然向着分布式、可扩展及多元化发展,所谓合久必分,不再有一种技术能包打天下了,这冲击着传统企业集中化的技术外包模式,挑战是巨大的。那么常见的数据平台架构有哪些?
一、常规数据仓库
数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。
二、敏捷型数据集市
数据集市也是常见的一种数据平台架构方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。
三、MPP(大规模并行处理)架构
进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop MapReduce框架以及MPP计算框架,都是基于这一背景产生。MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。
四、Hadoop分布式系统架构
说及大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、百度、淘宝等国内外大企,最初都是基于Hadoop来展开的。Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。
对于大数据平台的商业版本,企业面对的是合作伙伴的服务跟不上,因为发展太快,对于开源版本,企业面临的是自身运维能力和技术能力的挑战,对于自主能力实际要求更高。