一,队列

和栈一样,队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。队列是一种操作受限制的线性表,进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。

二,常见队列
1,FIFO队列

基本FIFO队列 先进先出 FIFO即First in First Out,先进先出。

python 清空bianliang python 清空队列_python

调用queue.Queue

from queue import Queue

fifo_queue = Queue()
fifo_queue.put(1)  # 队尾插入新元素
fifo_queue.put(2)
fifo_queue.put(3)
print(fifo_queue.queue)
print(fifo_queue.get())  # 队头取出元素
print(fifo_queue.queue)

链表实现

class LNode(object):
    def __init__(self, item, next_=None):
        self.item = item
        self.next = next_


class FIFOQueue(object):
    def __init__(self):
        """初始化"""
        self.head = None
        self.rear = None

    def is_empty(self):
        """判断是否为空"""
        return self.head is None

    def size(self):
        """获取队列长度"""
        cur = self.head
        count = 0
        while True:
            count += 1
            if cur == self.rear:
                break
            cur = cur.next
        return count

    def travel(self):
        """遍历队列"""
        if self.is_empty():
            print('queue is empty')
            return
        else:
            cur = self.head
            while True:
                print(cur.item, end='')
                if cur.next:
                    print(',', end='')
                if cur == self.rear:
                    break
                cur = cur.next
            print('')

    def push(self, val):
        """队尾插入新元素"""
        p = LNode(val)
        if self.is_empty():
            self.head = p
            self.rear = p
        else:
            self.rear.next = p
            self.rear = self.rear.next

    def get(self):
        """获取队头元素"""
        if self.is_empty():
            print('queue is empty')
            return
        else:
            e = self.head.item
            self.head = self.head.next
            return e

if __name__ == '__main__':
    FIFOQueue = FIFOQueue()
    FIFOQueue.push(1)
    FIFOQueue.push(2)
    FIFOQueue.push(3)
    FIFOQueue.push(4)
    FIFOQueue.travel()  # 1,2,3,4
    print(FIFOQueue.get())  # 1
    print(FIFOQueue.get())  # 2
    FIFOQueue.travel()  # 3,4

list实现

# list 实现
class FIFOQueue(object):
    def __init__(self):
        self.queue = list()

    def size(self):
        return len(self.queue)

    def travel(self):
        print(self.queue)

    def push(self, val):
        self.queue.append(val)

    def get(self):
        return self.queue.pop(0)


if __name__ == '__main__':
    FIFOQueue = FIFOQueue()
    FIFOQueue.push(1)
    FIFOQueue.push(2)
    FIFOQueue.push(3)
    FIFOQueue.push(4)
    FIFOQueue.travel()  # 1,2,3,4
    print(FIFOQueue.get())  # 1
    print(FIFOQueue.get())  # 2
    FIFOQueue.travel()  # 3,4
2,LIFO队列

LIFO即Last in First Out,后进先出。与栈的类似,在队尾进行插入和删除操作。

python 清空bianliang python 清空队列_python 清空bianliang_02


调用queue.LifoQueue

from queue import LifoQueue

lifo_queue = LifoQueue()
lifo_queue.put(1)  # 队尾插入新元素
lifo_queue.put(2)
lifo_queue.put(3)
print(lifo_queue.queue)
print(lifo_queue.get())  # 队尾取出元素
print(lifo_queue.queue)

链表实现
将链表头部作为队列尾部,在链表头部进行插入和删除操作。

class LNode(object):
    def __init__(self, item, next_=None):
        self.item = item
        self.next = next_


class LIFOQueue(object):
    def __init__(self):
        """初始化"""
        self.head = None

    def is_empty(self):
        """判断是否为空"""
        return self.head is None

    def size(self):
        """获取队列长度"""
        cur = self.head
        count = 0
        while cur:
            count += 1
            cur = cur.next
        return count

    def travel(self):
        """遍历队列"""
        travel_list = []
        cur = self.head
        while cur:
            travel_list.append(cur.item)
            cur = cur.next
        travel_list.reverse()
        print(travel_list)

    def push(self, val):
        """头部插入"""
        self.head = LNode(val, self.head)

    def get(self):
        """获取队头元素"""
        if self.is_empty():
            print('queue is empty')
            return
        else:
            e = self.head.item
            self.head = self.head.next
            return e


if __name__ == '__main__':
    LIFOQueue = LIFOQueue()
    LIFOQueue.push(1)
    LIFOQueue.push(2)
    LIFOQueue.push(3)
    LIFOQueue.push(4)
    LIFOQueue.travel()  # 1,2,3,4
    print(LIFOQueue.get())  # 4
    print(LIFOQueue.get())  # 3
    LIFOQueue.travel()  # 1,2

List实现

# list 实现
class LIFOQueue(object):
    def __init__(self):
        self.queue = list()

    def size(self):
        return len(self.queue)

    def travel(self):
        print(self.queue)

    def push(self, val):
        self.queue.append(val)

    def get(self):
        return self.queue.pop()


if __name__ == '__main__':
    LIFOQueue = LIFOQueue()
    LIFOQueue.push(1)
    LIFOQueue.push(2)
    LIFOQueue.push(3)
    LIFOQueue.push(4)
    LIFOQueue.travel()  # 1,2,3,4
    print(LIFOQueue.get())  # 4
    print(LIFOQueue.get())  # 3
    LIFOQueue.travel()  # 1,2
3,双向队列

双端队列(deque,全名 double-ended queue),是一种具有队列和栈的性质的数据结构。双端队列中的元素可以从两端弹出,其限定插入和删除操作在表的两端进行。双端队列可以在队列任意一端入队和出队。

python 清空bianliang python 清空队列_python_03


调用collections .deque

collections 是 python 内建的一个集合模块,里面封装了许多集合类,其中队列相关的集合只有一个:deque。

deque 是双边队列(double-ended queue),具有队列和栈的性质,在 list 的基础上增加了移动、旋转和增删等。

deque(maxlen=3),通过maxlen参数,可以创建固定长度的队列,当新元素加入队列且队列已满,会自动从另一端移除首个元素。不指定maxlen,得到无界限的队列。

from collections import deque

d = deque([])
d.append('a')  # 在最右边添加一个元素,此时 d=deque('a')
print(d)
d.appendleft('b')  # 在最左边添加一个元素,此时 d=deque(['b', 'a'])
print(d)
d.extend(['c', 'd'])  # 在最右边添加所有元素,此时 d=deque(['b', 'a', 'c', 'd'])
print(d)
d.extendleft(['e', 'f'])  # 在最左边添加所有元素,此时 d=deque(['f', 'e', 'b', 'a', 'c', 'd'])
print(d)
d.pop()  # 将最右边的元素取出,返回 'd',此时 d=deque(['f', 'e', 'b', 'a', 'c'])
print(d)
d.popleft()  # 将最左边的元素取出,返回 'f',此时 d=deque(['e', 'b', 'a', 'c'])
print(d)
d.rotate(-2)  # 向左旋转两个位置(正数则向右旋转),此时 d=deque(['a', 'c', 'e', 'b'])
print(d)

双向链表实现

python 清空bianliang python 清空队列_python_04

class DLNode(object):
    def __init__(self, item, prior_=None, next_=None):
        self.item = item
        self.prior = prior_
        self.next = next_

class DQueue(object):
    def __init__(self):
        self.head = None    # 头指针
        self.rear = None    # 尾制造

    def is_empty(self):
        return self.head is None

    def length(self):
        if self.is_empty():
            print('queue is empty')
            return
        else:
            cur = self.head
            count = 0
            while True:
                count += 1
                if cur == self.rear:
                    break
                cur = cur.next
            return count

    def travel(self):
        """遍历队列"""
        if self.is_empty():
            print('queue is empty')
            return
        else:
            cur = self.head
            while True:
                print(cur.item, end='')
                if cur.next:
                    print(',', end='')
                if cur == self.rear:
                    break
                cur = cur.next
            print('')

    def push_rear(self, val):
        """队尾插入元素"""
        p = DLNode(val)
        if self.is_empty():
            self.head = p
            self.rear = p
        else:
            self.rear.next = p
            p.prior = self.rear
            self.rear = self.rear.next

    def push_head(self, val):
        """队头插入元素"""
        p = DLNode(val)
        if self.is_empty():
            self.head = p
            self.rear = p
        else:
            p.next = self.head
            self.head.prior = p
            self.head = p

    def pop_rear(self):
        """获取队尾元素"""
        if self.is_empty():
            print('queue is empty')
            return
        else:
            p = self.rear
            self.rear = self.rear.prior
            self.rear.next = None
            return p.item

    def pop_head(self):
        """获取队头元素"""
        if self.is_empty():
            print('queue is empty')
            return
        else:
            e = self.head.item
            self.head = self.head.next
            return e


if __name__ == '__main__':
    DQueue = DQueue()
    DQueue.push_head(1)
    DQueue.push_head(2)
    DQueue.push_head(3)
    DQueue.travel()  # 3,2,1
    DQueue.push_rear('a')
    DQueue.push_rear('b')
    DQueue.travel()  # 3,2,1,a,b
    print(DQueue.pop_head())  # 3
    print(DQueue.pop_rear())  # b
    print(DQueue.pop_rear())  # a
    DQueue.travel()  # 2,1

list实现

class DQueue:
    """双端队列"""

    def __init__(self):
        self.queue = []

    def push_head(self, val):
        """从队头加入一个元素"""
        self.queue.insert(0, val)

    def push_rear(self, val):
        """从队尾加入一个元素"""
        self.queue.append(val)

    def pop_head(self):
        """从队头删除一个元素"""
        return self.queue.pop(0)

    def pop_rear(self):
        """从队尾删除一个元素"""
        return self.queue.pop()

    def is_empty(self):
        """是否为空"""
        return self.queue == []

    def size(self):
        """队列长度"""
        return len(self.queue)

    def travel(self):
        print(self.queue)


if __name__ == "__main__":
    DQueue = DQueue()
    DQueue.push_head(1)
    DQueue.push_head(2)
    DQueue.push_head(3)
    DQueue.travel()  # [3, 2, 1]
    DQueue.push_rear('a')
    DQueue.push_rear('b')
    DQueue.travel()  # [3, 2, 1, 'a', 'b']
    print(DQueue.pop_head())  # 3
    print(DQueue.pop_rear())  # b
    print(DQueue.pop_rear())  # a
    DQueue.travel()  # [2, 1]
4,优先级队列

python 清空bianliang python 清空队列_queue_05


优先级队列是一种容器型数据结构,它能管理一队记录,并按照排序字段(例如一个数字类型的权重值)为其排序。由于是排序的,所以在优先级队列中你可以快速获取到最大的和最小的值。

可以认为优先级队列是一种修改过的普通队列:普通队列依据记录插入的时间来获取下一个记录,而优先级队列依据优先级来获取下一个记录,优先级取决于排序字段的值。

优先级队列常用来解决调度问题,比如给紧急的任务更高的优先级。以操作系统的任务调度为例:高优先级的任务(比如实时游戏)应该先于低优先级的任务(比如后台下载软件更新)执行。

调用queue.PriorityQueue

在 Python 中,内置的标准库提供了两种实现优先队列的数据结构,分别是 heapq 模块和 PriorityQueue 模块,

最小优先级队列

更小的值具有更高的优先级,也就是会被最先输出

# 优先级队列
from queue import PriorityQueue as PQ

Pqueue = PQ()
Pqueue.put((1, 'a'))
Pqueue.put((3, 'c'))
Pqueue.put((2, 'b'))
Pqueue.put((2, 'd'))
Pqueue.put((5, 'e'))

print(Pqueue.queue)  # [(1, 'a'), (2, 'd'), (2, 'b'), (3, 'c'), (5, 'e')]

while not Pqueue.empty():
    print(Pqueue.get())
# (1, 'a')
# (2, 'b')
# (2, 'd')
# (3, 'c')
# (5, 'e')

最大优先级队列
更大的值具有更高的优先级,也就是会被最先输出。

from queue import PriorityQueue as PQ

Pqueue = PQ()
Pqueue.put((-1, 'a'))
Pqueue.put((-3, 'c'))
Pqueue.put((-2, 'b'))
Pqueue.put((-2, 'd'))
Pqueue.put((-5, 'e'))
print(Pqueue.queue)  # [(-5, 'e'), (-3, 'c'), (-2, 'b'), (-1, 'a'), (-2, 'd')]
while not Pqueue.empty():
    print(Pqueue.get())
# (-5, 'e')
# (-3, 'c')
# (-2, 'b')
# (-2, 'd') 当两个对象的优先级一致时,按照插入顺序排列
# (-1, 'a')

基于 heapq 实现
heapq 涉及到另一种数据结构“堆”,用heapq 实现优先级队列,也是基于最小堆,最大堆实现,这些在后面“堆”再一起研究下。

import heapq

class PriorityQueue(object):
    def __init__(self):
        self._queue = []
        # self._index = 0

    def push(self, item, priority):
        """
        队列由 (priority, index, item) 形式组成
        priority 默认是最小优先级,增加 "-" 实现最大优先级,
        index 是为了当两个对象的优先级一致时,按照插入顺序排列
        """
        heapq.heappush(self._queue, (-priority, item))
        # self._index += 1

    def pop(self):
        """
        弹出优先级最高的对象
        """
        return heapq.heappop(self._queue)[-1]

    def qsize(self):
        return len(self._queue)

    def empty(self):
        return True if not self._queue else False

if __name__ == '__main__':
    PQueue = PriorityQueue()
    PQueue.push('a', 1)
    PQueue.push('c', 3)
    PQueue.push('b', 2)
    PQueue.push('d', 2)
    PQueue.push('e', 5)
    PQueue.push('f', 1)
    while not PQueue.empty():
        print(PQueue.pop())    # e c b d a f
5,循环队列

在之前实现的队列时,都为固定队列长度,都创建无限队列,当队列空间有限时,插入和删除元素会有问题呢?

假定用长度为6的数组,表示长度为6的队列。队列中已经有三个元素a1、a2、a3。

python 清空bianliang python 清空队列_数据结构_06


如果新插入元素,只需要在队尾插入便可,在下标3的位置插入新元素a4,入队列的时间复杂度O(1)。

python 清空bianliang python 清空队列_python_07


如果删除元素,当a1出队列后,其后面的a2、a3、a4则需要向前移动一个位置,就好日常排队时,当前面人离开,后面的队伍都往前移动一步,所以出队列的时间复杂度为O(n)。

python 清空bianliang python 清空队列_python 清空bianliang_08


这种效率显然是不可以接受的,那么能不能不让所有成员都往前挪一位呢?

所以在原来的基础上,加入两个变量front、rear分别存储队头和队尾的下标。

此时front =0 ,rear = 3。

python 清空bianliang python 清空队列_数据结构_09


当有新元素插入队尾时,rear = rear+1。

python 清空bianliang python 清空队列_queue_10


当有元素出队列时,front = front + 1

python 清空bianliang python 清空队列_数据结构_11


这样一来,似乎不将后面所有成员往前挪,只需维护一下front的指向(front += 1)就可以保证队首,但是,当遇到下面这情况时,就存在“假溢出”的情况。

将a2、a3都出队列,此时front = 3,在将a6插入队列,此时rear = 6。

python 清空bianliang python 清空队列_queue_12


此时,队列长度为3,队列未满,再将a7插入队列时,就会报错数组越界,但是此时数组空间未满,前面0、1、2都空着,这种现象称为“假溢出”。

python 清空bianliang python 清空队列_队列_13


虽然这种方法不用移动元素,但是却造成空间上的浪费。可以看出此时数组是还有空间去容纳新元素a7的,因此我们需要将前面浪费的空间重新利用起来,减少空间的浪费,这就是循环队列的意义所在了。

python 清空bianliang python 清空队列_python 清空bianliang_14


1.循环队列包括两个指针(其实就是两个整数型变量,因为在这里有指示作用,所以这里理解为指针), front 指针指向队头元素, rear 指针指向队尾元素的下一个位置。

2.rear和front互相追赶着,这个追赶过程就是队列添加和删除的过程,如果rear追到head说明队列满了,如果front追到rear说明队列为空。

3,rear和front位置的移动,关键在于% (取模运算),这样就防止rear和front 超过maxsize。

网上最常看到的实现代码

class SqQueue(object):
    def __init__(self, maxsize):
        self.queue = [None] * maxsize
        self.maxsize = maxsize
        self.front = 0
        self.rear = 0

    # 返回当前队列的长度
    def QueueLength(self):
        return (self.rear - self.front + self.maxsize) % self.maxsize

    # 如果队列未满,则在队尾插入元素,时间复杂度O(1)
    def EnQueue(self, data):
        if (self.rear + 1) % self.maxsize == self.front:
            print("The queue is full!")
        else:
            self.queue[self.rear] = data
           # self.queue.insert(self.rear,data)
            self.rear = (self.rear + 1) % self.maxsize

    # 如果队列不为空,则删除队头的元素,时间复杂度O(1)
    def DeQueue(self):
        if self.rear == self.front:
            print("The queue is empty!")
        else:
            data = self.queue[self.front]
            self.queue[self.front] = None
            self.front = (self.front + 1) % self.maxsize
            return data

    # 输出队列中的元素
    def ShowQueue(self):
        for i in range(self.maxsize):
            print(self.queue[i],end=',')
        print(' ')

这有个bug,由于 self.rear = (self.rear + 1) % self.maxsize 这会造成一个空间的浪费!! 可以运行下代码看看。

所以自己写了一段代码,直接使用现有元素个数cnt 与 maxsize 比较来判断是否为空?是否已满?

class CycleQueue(object):

    def __init__(self, maxsize):
        self.queue = [None] * maxsize
        self.maxsize = maxsize
        self.front = 0
        self.rear = 0
        self.cnt = 0

    def is_empty(self):
        return self.cnt == 0

    def is_full(self):
        return self.cnt == self.maxsize

    def push(self, val):
        if self.is_full():
            print("The queue is full!")
            return
        if self.is_empty():
            self.queue[self.rear] = val
            self.cnt += 1
        else:
            self.rear = (self.rear + 1) % self.maxsize
            self.queue[self.rear] = val
            self.cnt += 1

    def pop(self):
        if self.is_empty():
            print("The queue is empty!")
            return
        val = self.queue[self.front]
        self.queue[self.front] = None
        self.front = (self.front + 1) % self.maxsize
        self.cnt -= 1
        return val

    def travel(self):
        travel_list = [self.queue[(self.front + i) % self.maxsize] for i in range(self.cnt)]
        print(travel_list)

    def size(self):
        return self.cnt


if __name__ == '__main__':
    CycleQueue = CycleQueue(6)
    CycleQueue.push('a1')
    CycleQueue.push('a2')
    CycleQueue.push('a3')
    CycleQueue.push('a4')
    CycleQueue.push('a5')
    CycleQueue.travel()  # ['a1', 'a2', 'a3', 'a4', 'a5']
    CycleQueue.push('a6')
    CycleQueue.travel()  # ['a1', 'a2', 'a3', 'a4', 'a5', 'a6']
    CycleQueue.pop()
    CycleQueue.push('a7')
    CycleQueue.travel()  # ['a2', 'a3', 'a4', 'a5', 'a6', 'a7']
    CycleQueue.pop()
    CycleQueue.pop()
    CycleQueue.push('a8')
    CycleQueue.travel()  # ['a4', 'a5', 'a6', 'a7', 'a8']