【学术会议前沿信息|科研必备】IEEE+EI+Scopus+谷歌检索|AI与网络安全、AI驱动与数据科学、光电材料与电子信息、公共卫生与数据科学国际学术前沿!
【学术会议前沿信息|科研必备】IEEE+EI+Scopus+谷歌检索|AI与网络安全、AI驱动与数据科学、光电材料与电子信息、公共卫生与数据科学国际学术前沿!
文章目录
- 【学术会议前沿信息|科研必备】IEEE+EI+Scopus+谷歌检索|AI与网络安全、AI驱动与数据科学、光电材料与电子信息、公共卫生与数据科学国际学术前沿!
- 🔒 人工智能与网络安全|第三届AISNS 2025ACM会议
- 🤖 AI驱动与数据科学|ICBTDS 2025ACM会议
- 🔦 光电材料与电子信息|第一届OMEIE 2025SPIE会议
- 🏥 公共卫生与数据科学|第四届ICPHDS 2025ACM会议
欢迎铁子们点赞、关注、收藏!
 祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通”或参考学术信息专栏:
🔒 人工智能与网络安全|第三届AISNS 2025ACM会议
- 🚀 会议名称:第三届人工智能、系统与网络安全国际学术会议(AISNS 2025)
- 📅 时间:2025年11月14-16日
- 📍 地点:中国-湘潭
- ✨ 亮点:7天快速审稿!ACM出版稳定检索,伟人故里湘潭见证AI安全创新!
- 📚 检索:ACM Digital Library, EI Compendex, Scopus
- 👨💻 适合人群:人工智能、网络安全、系统安全领域硕博生,追求高效出版与红色文化体验!
- 领域:网络入侵检测、威胁分析——算法:基于深度学习的网络入侵检测系统
class NetworkIntrusionDetector:
    """基于深度学习的网络入侵检测系统"""
    def __init__(self):
        self.scaler = StandardScaler()
        self.label_encoder = LabelEncoder()
        self.model = None
        
    def preprocess_data(self, data, categorical_columns, target_column):
        """预处理网络流量数据"""
        # 处理分类变量
        for col in categorical_columns:
            if col in data.columns:
                data[col] = data[col].astype('category').cat.codes
                
        # 分离特征和目标
        X = data.drop(target_column, axis=1)
        y = data[target_column]
        
        # 编码目标变量
        y_encoded = self.label_encoder.fit_transform(y)
        
        # 标准化特征
        X_scaled = self.scaler.fit_transform(X)
        
        return X_scaled, y_encoded, self.label_encoder.classes_
    
    def build_lstm_model(self, input_shape, num_classes):
        """构建LSTM网络入侵检测模型"""
        model = Sequential([
            LSTM(64, return_sequences=True, input_shape=input_shape),
            Dropout(0.2),
            LSTM(32, return_sequences=False),
            Dropout(0.2),
            Dense(16, activation='relu'),
            Dense(num_classes, activation='softmax')
        ])
        
        model.compile(
            optimizer='adam',
            loss='sparse_categorical_crossentropy',
            metrics=['accuracy']
        )
        
        return model
    
    def train(self, X, y, test_size=0.2, epochs=50, batch_size=32):
        """训练入侵检测模型"""
        # 划分训练测试集
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=test_size, random_state=42, stratify=y
        )
        
        # 重塑数据以适应LSTM输入 (样本数, 时间步长, 特征数)
        # 这里我们将每个样本视为一个时间步长,特征作为输入维度
        X_train_reshaped = X_train.reshape((X_train.shape[0], 1, X_train.shape[1]))
        X_test_reshaped = X_test.reshape((X_test.shape[0], 1, X_test.shape[1]))
        
        # 构建模型
        self.model = self.build_lstm_model(
            (X_train_reshaped.shape[1], X_train_reshaped.shape[2]), 
            len(np.unique(y))
        )
        
        # 训练模型
        history = self.model.fit(
            X_train_reshaped, y_train,
            epochs=epochs,
            batch_size=batch_size,
            validation_data=(X_test_reshaped, y_test),
            verbose=1
        )
        
        # 评估模型
        y_pred = np.argmax(self.model.predict(X_test_reshaped), axis=1)
        
        print("分类报告:")
        print(classification_report(y_test, y_pred, 
                                  target_names=self.label_encoder.classes_))
        
        # 绘制混淆矩阵
        self.plot_confusion_matrix(y_test, y_pred)
        
        return history
    
    def plot_confusion_matrix(self, y_true, y_pred):
        """绘制混淆矩阵"""
        cm = confusion_matrix(y_true, y_pred)
        plt.figure(figsize=(10, 8))
        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
                   xticklabels=self.label_encoder.classes_,
                   yticklabels=self.label_encoder.classes_)
        plt.title('入侵检测混淆矩阵')
        plt.ylabel('真实标签')
        plt.xlabel('预测标签')
        plt.show()
    
    def predict(self, X_new):
        """预测新数据"""
        X_scaled = self.scaler.transform(X_new)
        X_reshaped = X_scaled.reshape((X_scaled.shape[0], 1, X_scaled.shape[1]))
        predictions = self.model.predict(X_reshaped)
        return np.argmax(predictions, axis=1), self.label_encoder.inverse_transform(np.argmax(predictions, axis=1))🤖 AI驱动与数据科学|ICBTDS 2025ACM会议
- 🚀 会议名称:2025年AI驱动下:业务转型和数据科学创新国际学术会议
- 📅 时间:2025年11月14-16日
- 📍 地点:印度尼西亚-万隆(线上线下结合)
- ✨ 亮点:1周内极速审稿!ACM多库检索稳定,万隆热带风情融合数据科学前沿!
- 📚 检索:ACM Digital Library, EI Compendex, Scopus, Google Scholar
- 👩🔬 适合人群:数据科学、商业分析、AI应用研究者,期待国际交流与东南亚学术氛围!
- 领域:时间序列预测、数据挖掘——算法:Prophet时间序列预测算法
class TimeSeriesForecaster:
    """基于Prophet的时间序列预测"""
    def __init__(self, seasonality_mode='additive', holidays=None):
        self.model = Prophet(
            seasonality_mode=seasonality_mode,
            holidays=holidays,
            yearly_seasonality=True,
            weekly_seasonality=True,
            daily_seasonality=False
        )
        self.forecast = None
        
    def add_custom_seasonality(self, name, period, fourier_order):
        """添加自定义季节性组件"""
        self.model.add_seasonality(name=name, period=period, fourier_order=fourier_order)
    
    def fit(self, df, changepoint_prior_scale=0.05):
        """拟合时间序列数据"""
        # 确保数据框有正确的列名
        if 'ds' not in df.columns or 'y' not in df.columns:
            raise ValueError("数据框必须包含 'ds' (日期) 和 'y' (值) 列")
        
        # 配置变化点先验尺度
        self.model.changepoint_prior_scale = changepoint_prior_scale
        
        # 拟合模型
        self.model.fit(df)
        
        return self
    
    def predict(self, periods, freq='D', include_history=True):
        """生成预测"""
        future = self.model.make_future_dataframe(periods=periods, freq=freq, include_history=include_history)
        self.forecast = self.model.predict(future)
        return self.forecast
    
    def plot_components(self):
        """绘制预测组件"""
        if self.forecast is not None:
            return self.model.plot_components(self.forecast)
        else:
            raise ValueError("请先运行预测")
    
    def cross_validation(self, initial, period, horizon):
        """交叉验证"""
        from prophet.diagnostics import cross_validation, performance_metrics
        
        df_cv = cross_validation(self.model, initial=initial, period=period, horizon=horizon)
        df_p = performance_metrics(df_cv)
        
        return df_cv, df_p
    
    def plot_forecast(self, actual_df=None):
        """绘制预测结果"""
        if self.forecast is not None:
            fig = self.model.plot(self.forecast)
            if actual_df is not None:
                plt.scatter(actual_df['ds'], actual_df['y'], color='red', s=5, alpha=0.5, label='实际值')
                plt.legend()
            return fig
        else:
            raise ValueError("请先运行预测")🔦 光电材料与电子信息|第一届OMEIE 2025SPIE会议
- 🚀 会议名称:2025年第一届光电材料与电子信息工程国际学术会议
- 📅 时间:2025年11月21-23日
- 📍 地点:中国-南昌
- ✨ 亮点:SPIE出版快速见刊!1周审稿响应,英雄城南昌点亮光电材料创新之路!
- 📚 检索:EI Compendex, Scopus
- 👨🔧 适合人群:光电材料、电子信息、工程应用领域硕博生,注重工程实践与革命圣地体验!
- 领域:材料特性预测、光电性能优化——算法:基于随机森林的光电材料性能预测
class PhotonicMaterialPredictor:
    """光电材料性能预测模型"""
    def __init__(self, n_estimators=100, random_state=42):
        self.model = RandomForestRegressor(
            n_estimators=n_estimators,
            random_state=random_state,
            n_jobs=-1
        )
        self.scaler = StandardScaler()
        self.feature_importance = None
        self.best_params = None
        
    def preprocess_data(self, data, target_column):
        """预处理材料数据"""
        # 分离特征和目标
        X = data.drop(target_column, axis=1)
        y = data[target_column]
        
        # 标准化特征
        X_scaled = self.scaler.fit_transform(X)
        
        return X_scaled, y, X.columns
    
    def hyperparameter_tuning(self, X, y, param_grid, cv=5):
        """超参数调优"""
        grid_search = GridSearchCV(
            estimator=self.model,
            param_grid=param_grid,
            cv=cv,
            scoring='neg_mean_squared_error',
            n_jobs=-1,
            verbose=1
        )
        
        grid_search.fit(X, y)
        
        self.best_params = grid_search.best_params_
        self.model = grid_search.best_estimator_
        
        return grid_search.best_score_, grid_search.best_params_
    
    def train(self, X, y, test_size=0.2, tune_hyperparams=False):
        """训练材料性能预测模型"""
        # 划分训练测试集
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=test_size, random_state=42
        )
        
        # 超参数调优
        if tune_hyperparams:
            param_grid = {
                'n_estimators': [50, 100, 200],
                'max_depth': [None, 10, 20, 30],
                'min_samples_split': [2, 5, 10],
                'min_samples_leaf': [1, 2, 4]
            }
            
            best_score, best_params = self.hyperparameter_tuning(X_train, y_train, param_grid)
            print(f"最佳参数: {best_params}")
            print(f"最佳分数: {-best_score:.4f}")
        
        # 训练模型
        self.model.fit(X_train, y_train)
        
        # 评估模型
        y_pred = self.model.predict(X_test)
        
        mse = mean_squared_error(y_test, y_pred)
        r2 = r2_score(y_test, y_pred)
        
        print(f"测试集均方误差: {mse:.4f}")
        print(f"测试集R²分数: {r2:.4f}")
        
        # 计算特征重要性
        self.feature_importance = pd.DataFrame({
            'feature': self.feature_names,
            'importance': self.model.feature_importances_
        }).sort_values('importance', ascending=False)
        
        # 绘制预测值与实际值对比
        self.plot_predictions(y_test, y_pred)
        
        # 绘制特征重要性
        self.plot_feature_importance()
        
        return mse, r2
    
    def plot_predictions(self, y_true, y_pred):
        """绘制预测值与实际值对比图"""
        plt.figure(figsize=(10, 6))
        plt.scatter(y_true, y_pred, alpha=0.5)
        plt.plot([y_true.min(), y_true.max()], [y_true.min(), y_true.max()], 'r--', lw=2)
        plt.xlabel('实际值')
        plt.ylabel('预测值')
        plt.title('预测值与实际值对比')
        plt.show()
    
    def plot_feature_importance(self, top_n=10):
        """绘制特征重要性图"""
        if self.feature_importance is not None:
            top_features = self.feature_importance.head(top_n)
            plt.figure(figsize=(10, 8))
            sns.barplot(x='importance', y='feature', data=top_features)
            plt.title('特征重要性排名')
            plt.tight_layout()
            plt.show()
    
    def predict(self, X_new):
        """预测新材料性能"""
        X_scaled = self.scaler.transform(X_new)
        return self.model.predict(X_scaled)🏥 公共卫生与数据科学|第四届ICPHDS 2025ACM会议
- 🚀 会议名称:第四届公共卫生与数据科学国际学术会议(ICPHDS 2025)
- 📅 时间:2025年11月21-23日
- 📍 地点:中国-烟台
- ✨ 亮点:1周内审稿反馈!ACM出版检索稳定,海滨烟台聚焦公共卫生与数据融合!
- 📚 检索:EI Compendex, Scopus
- 👩⚕️ 适合人群:公共卫生、数据科学、医学信息学研究者,追求跨学科创新与滨海城市学术氛围!
- 领域:疾病传播预测、公共卫生决策——算法:SEIR传染病传播模型
class SEIRModel:
    """SEIR传染病传播模型"""
    def __init__(self, population, initial_exposed, initial_infected, initial_recovered):
        self.population = population
        self.initial_exposed = initial_exposed
        self.initial_infected = initial_infected
        self.initial_recovered = initial_recovered
        self.initial_susceptible = population - initial_exposed - initial_infected - initial_recovered
        
        # 初始状态向量 [S, E, I, R]
        self.initial_state = [
            self.initial_susceptible,
            self.initial_exposed,
            self.initial_infected,
            self.initial_recovered
        ]
    
    def seir_model(self, state, t, beta, sigma, gamma):
        """SEIR模型微分方程"""
        S, E, I, R = state
        
        # 易感者变化率
        dSdt = -beta * S * I / self.population
        
        # 暴露者变化率
        dEdt = beta * S * I / self.population - sigma * E
        
        # 感染者变化率
        dIdt = sigma * E - gamma * I
        
        # 康复者变化率
        dRdt = gamma * I
        
        return [dSdt, dEdt, dIdt, dRdt]
    
    def simulate(self, days, beta, sigma, gamma, interventions=None):
        """模拟疾病传播"""
        # 时间点
        t = np.linspace(0, days, days)
        
        # 如果没有干预措施,直接模拟
        if interventions is None:
            result = odeint(self.seir_model, self.initial_state, t, args=(beta, sigma, gamma))
            S, E, I, R = result.T
            return pd.DataFrame({
                'Day': t,
                'Susceptible': S,
                'Exposed': E,
                'Infected': I,
                'Recovered': R
            })
        
        # 如果有干预措施,分段模拟
        results = []
        current_state = self.initial_state
        current_time = 0
        
        for intervention in interventions:
            # 干预开始时间和参数
            start_day = intervention['start_day']
            end_day = intervention['end_day']
            intervention_beta = intervention.get('beta', beta)
            intervention_sigma = intervention.get('sigma', sigma)
            intervention_gamma = intervention.get('gamma', gamma)
            
            # 模拟干预前阶段
            if current_time < start_day:
                t_segment = np.linspace(current_time, start_day, int(start_day - current_time) + 1)
                result_segment = odeint(
                    self.seir_model, current_state, t_segment, args=(beta, sigma, gamma)
                )
                results.append(pd.DataFrame({
                    'Day': t_segment,
                    'Susceptible': result_segment[:, 0],
                    'Exposed': result_segment[:, 1],
                    'Infected': result_segment[:, 2],
                    'Recovered': result_segment[:, 3]
                }))
                current_state = result_segment[-1, :]
                current_time = start_day
            
            # 模拟干预阶段
            t_intervention = np.linspace(current_time, end_day, int(end_day - current_time) + 1)
            result_intervention = odeint(
                self.seir_model, current_state, t_intervention, 
                args=(intervention_beta, intervention_sigma, intervention_gamma)
            )
            results.append(pd.DataFrame({
                'Day': t_intervention,
                'Susceptible': result_intervention[:, 0],
                'Exposed': result_intervention[:, 1],
                'Infected': result_intervention[:, 2],
                'Recovered': result_intervention[:, 3]
            }))
            current_state = result_intervention[-1, :]
            current_time = end_day
        
        # 模拟干预后阶段(如果有)
        if current_time < days:
            t_final = np.linspace(current_time, days, int(days - current_time) + 1)
            result_final = odeint(
                self.seir_model, current_state, t_final, args=(beta, sigma, gamma)
            )
            results.append(pd.DataFrame({
                'Day': t_final,
                'Susceptible': result_final[:, 0],
                'Exposed': result_final[:, 1],
                'Infected': result_final[:, 2],
                'Recovered': result_final[:, 3]
            }))
        
        # 合并所有结果
        return pd.concat(results, ignore_index=True)
    
    def plot_results(self, results, title='SEIR模型模拟结果'):
        """绘制模拟结果"""
        plt.figure(figsize=(12, 8))
        plt.plot(results['Day'], results['Susceptible'], label='易感者 (S)', color='blue')
        plt.plot(results['Day'], results['Exposed'], label='暴露者 (E)', color='orange')
        plt.plot(results['Day'], results['Infected'], label='感染者 (I)', color='red')
        plt.plot(results['Day'], results['Recovered'], label='康复者 (R)', color='green')
        
        plt.xlabel('时间 (天)')
        plt.ylabel('人数')
        plt.title(title)
        plt.legend()
        plt.grid(True)
        plt.show()
    
    def calculate_r0(self, beta, gamma):
        """计算基本再生数 R0"""
        return beta / gamma
    
    def calculate_rt(self, results, beta, gamma, day=None):
        """计算有效再生数 Rt"""
        if day is None:
            day = len(results) - 1
        
        S_t = results.loc[day, 'Susceptible']
        return self.calculate_r0(beta, gamma) * S_t / self.population- 📢 投稿机遇稍纵即逝,让学术之光闪耀国际舞台!稳定检索城市特色,等你来书写创新篇章!📢
                
 
 
                     
            
        













 
                    

 
                 
                    