目录
- WordCount案例
- 需求
- 环境准备
- 本地测试
- 提交到集群测试
- 集群测试
- 源码程序
- 1.WordCountMapper类
- 2.WordCountReducer类
- 3.WordCountDriver类
WordCount案例
需求
: 统计一堆文件中单词出现的个数。
1.输入数据
hello hello
hi hi
haha
map
reduce
2.期望输出数据
hello 2
hi 2
haha 1
map 1
reduce 1
需求分析:按照MapReduce编程规范,分别编写Mapper、Reducer、Driver。
3.Mapper
1). 将MapTask传给我们的文本内容转换成String:
hello hello
2). 根据空格将这一行切分成单词:
hello
hello
3). 将单词输出为<单词,1>
hello, 1
hello, 1
4.Reducer
1). 汇总各个key的个数
hello, 1
hello, 1
2). 输出该key的总次数
hello, 2
5.Driver
1). 获取配置信息,获取job对象实例;
2). 制定本程序的jar包所在的本地路径;
3). 关联Mapper/Reducer业务类;
4). 指定Mapper输出数据的KV类型;
5). 指定最终输出的数据的KV类型;
6). 指定job的输入原始文件所在目录;
7). 指定job的输出结果所在目录;
8).提交作业。
环境准备
1.创建maven工程,MapReduceDemo;
2.在pom.xml文件中添加如下依赖:
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.2.2</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-log4j12 -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
3.在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties“,在文件中填入:
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
4.创建包名:com.xiaobai.mapreduce.wordcount;
分别编写Mapper、Reducer、Driver类。
本地测试
源码Driver部分:
//6.设置输入路径和输出路径
FileInputFormat.setInputPaths(job,new Path("/Users/jane/Desktop/test/"));
FileOutputFormat.setOutputPath(job,new Path("/Users/jane/Desktop/hadoop/output"));
在“/Users/jane/Desktop/test/”目录下新建一份hello.xml,内容如下:
输出结果:
提交到集群测试
集群测试
1.用maven打jar包,在pom.xml文件中添加如下依赖:
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
2.打包maven jar包。
(ps.我太难了,这张图是拼接的,截了好几次图,一直缺东缺西的,不太完美 = = )
3.使用命令启动集群:
[xiaobai@hadoop102 ~]$ myhadoop.sh start
4.使用命令查看进程,确保集群已经正常启动:
[xiaobai@hadoop102 ~]$ jpsall
5.将jar包复制一份到桌面并命名为wc.jar,上传打包好的jar包到/opt/module/hadoop3.2.2:
6.右击WordCountDriver–>copy/paste Special–>copy reference拷贝全类名。
com.xiaobai.mapreduce.wordcount.WordCountDriver
7.在/opt/module/hadoop3.2.2目录下创建WordSum.txt并输入以下内容:
[xiaobai@hadoop102 hadoop-3.2.2]$ vim WordSum.txt
8.如图,切换hdfs用户并创建一个input文件夹:
[xiaobai@hadoop102 hadoop-3.2.2]$ hdfs dfs -mkdir /input
9.如图,将本地文件WordSum.txt上传到HDFS:
[xiaobai@hadoop102 hadoop-3.2.2]$ hdfs dfs -put /opt/module/hadoop-3.2.2/WordSum.txt /input
10.如图,运行wc.jar:
[xiaobai@hadoop102 hadoop-3.2.2]$ hadoop jar wc.jar com.xiaobai.mapreduce.wordcount.WordCountDriver /input /output
tips: 空格计数1是因为我多打了一行,并没有写入内容。
源码程序
1.WordCountMapper类
package com.xiaobai.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/*
KEYIN, map阶段输入的key的类型:LongWritable
VALUEIN, map阶段输入value类型:Text
KEYOUT, map阶段输出的key类型:Text
VALUEOUT,map阶段输出的value类型:IntWritable
*/
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行
//hello hello
String line = value.toString();
//2.切割
//hello
//hello
String[] words = line.split(" ");
//3.循环写出
for (String s : words) {
//封装outK
outK.set(s);
//写出
context.write(outK,outV);
}
}
}
2.WordCountReducer类
package com.xiaobai.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/*
KEYIN, reduce阶段输入的key的类型:Text
VALUEIN, reduce阶段输入value类型:IntWritable
KEYOUT, reduce阶段输出的key类型:Text
VALUEOUT,reduce阶段输出的value类型:IntWritable
*/
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
//hello,(1,1)
//累加
for (IntWritable value: values) {
sum += value.get();
}
outV.set(sum);
//写出
context.write(key,outV);
}
}
3.WordCountDriver类
package com.xiaobai.mapreduce.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/*
KEYIN, map阶段输入的key的类型:LongWritable
VALUEIN, map阶段输入value类型:Text
KEYOUT, map阶段输出的key类型:Text
VALUEOUT,map阶段输出的value类型:IntWritable
*/
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2.设置jar包路径
job.setJarByClass(WordCountDriver.class);
//3.关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//4.设置map输出的KV类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//5.设置最终输出的KV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//6.设置输入路径和输出路径
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
//7.提交job
boolean result = job.waitForCompletion(true);
System.exit(result?0:1);
}
}