一、Asynchronous I/O简介
官网:http://flink.iteblog.com/dev/stream/asyncio.html
将Flink用于流计算时,若涉及到和外部系统进行交互,如利用Flink从数据库中读取数据,这种需要获取I/O的场景时,我们需要考虑交互所带来的时延问题。
为分析如何减少时延,我们先来分析一下,Flink以同步的形式方法外部系统(以MapFunction中和数据库交互为例)的过程,若图1虚线左侧所示,请求a发送到database后,MapFunction等待回复后才进行下发送下一个请求b,期间,I/O处于空闲状态,请求b又开始重复此过程,这样在两个来回的时间内(发送请求-收到结果为一个来回),只处理两个请求。如图1虚线右侧所示,同样是在两个来回的时间内,以异步的形式进行交互,请求a发出去后,在等待回复时,请求b,c,d依次发出,这样既可以处理4个请求了。
在某些场景下,为了提高系统的吞吐能力,可以仅通过增大MapFunction的并发度以达目的,但是随之而来是资源的大量消耗。
【重要事项】在异步IO中需要考虑数据库查询超时以及并发线程数控制两个因素
1)为了实现以异步I/O访问数据库或K/V存储,数据库等需要有能支持异步请求的client;若是没有,可以通过创建多个同步的client并使用线程池处理同步call的方式实现类似并发的client,但是这方式没有异步I/O的性能好。
2)AsyncFunction不是以多线程方式调用的,一个AsyncFunction实例按顺序为每个独立消息发送请求;
3)目前(Flink 1.9),使用AsyncWaitOperator时要打断operator chain(默认也是不使用),原因见FLINK-13063。
二、结果的顺序
由于请求响应的快慢可能不一样,AsyncFunction的“并发”请求可能导致结果的乱序 。如图1中虚线右侧所示,若请求b发出之后,其结果在请求a的之前返回,这样异步I/O算子前后的消息顺序就不一致了。为了控制结果的返回顺序,Flink提供了两种模式:
1)Unordered:当异步的请求完成时,其结果立马返回,不考虑结果顺序即乱序模式。当以processing time作为时间属性时,该模式可以获得最小的延时和最小的开销,使用方式:AsyncDataStream.unorderedWait(...);
2)Ordered:该模式下,消息在异步I/O算子前后的顺序一致,先请求的先返回,即有序模式。为实现有序模式,算子将请求返回的结果放入缓存,直到该请求之前的结果全部返回或超时。该模式通常情况下回引入额外的时延以及在checkpoint过程中会带来开销,这是因为,和无序模式相比,消息和请求返回的结果都会在checkpoint的状态中维持更长时间。使用方式:AsyncDataStream.orderedWait(...);
在此,我们需要针对流任务和event time相结合的情况进行补充说明。为什么?是因为watermark和消息的整体相对位置是不会变的,什么意思了?发生在某个watermark之后的消息,只能在watermark被发出之后发出,其请求结果也是。换句话说,两个watermark之间的消息整体与watermark的有序的。当然这个区间内消息之间是否有序这得根据使用的模式来分析。
1)对Ordered模式,因为消息本身是有序的,所以watermark和消息之间也是有序的,和processing time相比,其不需要引入额外的开销;
2)对Unordered模式,其模式是先响应先返回,但在与event time结合的情况里,消息或结果都需在特定watermark发出之后才能发出,此时,就会引入延时和开销,其开销的大小取决于watermark的频率,其原因参加下文原理部分。
三、原理
3.1、terms条目
为更加详细的说明异步I/O的实现过程,先说明几个term,其中也会涉及其基本用法,若分析原理只看其含义即可。
1)AsyncFunction:异步I/O的触发接口
AsyncFunction在AsyncWaitOperator中作为一个用户函数,类似FlatMap,有open()/processElement(StreamRecord< in > record)/processWatermark(Watermark mark)方法。
对于用户自己实现的AsyncFunction,必须重写asyncInvoke(IN input, AsyncCollector collector)来提供调用异步操作的代码。
2)AsyncWaitOperator:调用AsyncFunction的流算子,是个抽象的概念,具体算子是unorderedWait(...)或orderedWait(...)
3)AsyncCollector:
AsyncCollector由AsyncWaitOperator创建,并传递给AsyncFunction,在这里它应该被添加到用户的回调函数中。它充当从用户代码中获取结果或错误的角色,并通知AsyncCollectorBuffer发出结果。
4)AsyncCollectorBuffer:AsyncCollectorBuffer保存所有的AsyncCollector,并将结果发送给下一个节点。
AsyncDataStream.java源码:
public class AsyncDataStream {
/**
* Add an AsyncWaitOperator. The order of output stream records may be reordered.
*
* @param in Input data stream
* @param func AsyncFunction
* @bufSize The max number of async i/o operation that can be triggered
* @return A new DataStream.
*/
public static DataStream<OUT> unorderedWait(DataStream<IN> in, AsyncFunction<IN, OUT> func, int bufSize);
public static DataStream<OUT> unorderedWait(DataStream<IN> in, AsyncFunction<IN, OUT> func);
/**
* Add an AsyncWaitOperator. The order of output stream records is guaranteed to be the same as input ones.
*
* @param func AsyncWaitFunction
* @param func AsyncFunction
* @bufSize The max number of async i/o operation that can be triggered
* @return A new DataStream.
*/
public static DataStream<OUT> orderedWait(DataStream<IN> in, AsyncFunction<IN, OUT> func, int bufSize);
public static DataStream<OUT> orderedWait(DataStream<IN> in, AsyncFunction<IN, OUT> func);
}
3.2、架构图
在流式计算中,涉及异步I/O的整体过程图如下:
1)消息达到AsyncWaitOperator后正常处理过程如下:
AsyncWaitOperator调用AsyncFunction,并创建AsyncCollector传递给AsyncFunction。AsyncCollector等待获取到返回结果(异常)之后将入到AsyncCollectorBuffer保存时,会将一条mark消息放入AsyncCollectorBuffer中,然后一个signal信息将会发送到Emitter 线程,若此时是将消息发送出去的signal,则会将消息发送出去并通知task thread加消息到collector buffer中。至于怎么发要依据代码中设置的模式是有序还是无序,若是有序则发head,删head。该过程的更详细过程如下图:
2)checkpoint过程
AsyncWaitOperator先是对AsyncCollectorBuffer中所有的输入流数据进行扫描,完成后就删除state中老的数据,然后将AsyncCollectorBuffer中数据存入到state中,而不是在处理时对单个输入流一个接一个的存入state,具体过程图见图2或图4。
3)故障恢复
在恢复AsyncWaitOperator的状态时,AsyncWaitOperator将scan状态中的所有元素,获取AsyncCollectors,调用AsyncFunction.asyncInvoke()并将它们插入AsyncCollectorBuffer中,具体的如下:
图4 故障恢复和checkpoint流程图(Ref[2])
Ref
[1]https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/operators/asyncio.html
[2]https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65870673
[3]https://blog.icocoro.me/2019/05/26/1905-apache-flinkv2-asyncio/