边缘检测

学习目标

  • 了解Sobel算子,Scharr算子和拉普拉斯算子
  • 掌握canny边缘检测的原理及应用

1 原理

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。边缘的表现形式如下图所示:

深度学习的边缘检测 边缘检测算法的应用_边缘检测

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于搜索和基于零穿越。

  • 基于搜索:通过寻找图像一阶导数中的最大值来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值,代表算法是Sobel算子和Scharr算子。
  • 基于零穿越:通过寻找图像二阶导数零穿越来寻找边界,代表算法是Laplacian算子。

2 Sobel检测算子

Sobel边缘检测算法比较简单,实际应用中效率比canny边缘检测效率要高,但是边缘不如Canny检测的准确,但是很多实际应用的场合,sobel边缘却是首选,Sobel算子是高斯平滑与微分操作的结合体,所以其抗噪声能力很强,用途较多。尤其是效率要求较高,而对细纹理不太关心的时候。

2.1 方法

深度学习的边缘检测 边缘检测算法的应用_深度学习的边缘检测_02

2.2 应用

利用OpenCV进行sobel边缘检测的API是:

Sobel_x_or_y = cv2.Sobel(src, ddepth, dx, dy, dst, ksize, scale, delta, borderType)

参数:

  • src:传入的图像
  • ddepth: 图像的深度
  • dx和dy: 指求导的阶数,0表示这个方向上没有求导,取值为0、1。
  • ksize: 是Sobel算子的大小,即卷积核的大小,必须为奇数1、3、5、7,默认为3。
    注意:如果ksize=-1,就演变成为3x3的Scharr算子。
  • scale:缩放导数的比例常数,默认情况为没有伸缩系数。
  • borderType:图像边界的模式,默认值为cv2.BORDER_DEFAULT。

Sobel函数求完导数后会有负值,还有会大于255的值。而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。因此要使用16位有符号的数据类型,即cv2.CV_16S。处理完图像后,再使用cv2.convertScaleAbs()函数将其转回原来的uint8格式,否则图像无法显示。

Sobel算子是在两个方向计算的,最后还需要用cv2.addWeighted( )函数将其组合起来

Scale_abs = cv2.convertScaleAbs(x) # 格式转换函数

result = cv2.addWeighted(src1, alpha, src2, beta) # 图像混合

示例:

import cv2 as cv

import numpy as np

from matplotlib import pyplot as plt

# 1 读取图像

img = cv.imread('./image/horse.jpg',0)

# 2 计算Sobel卷积结果

x = cv.Sobel(img, cv.CV_16S, 1, 0)

y = cv.Sobel(img, cv.CV_16S, 0, 1)

# 3 将数据进行转换

Scale_absX = cv.convertScaleAbs(x) # convert 转换 scale 缩放

Scale_absY = cv.convertScaleAbs(y)

# 4 结果合成

result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0)

# 5 图像显示

plt.figure(figsize=(10,8),dpi=100)

plt.subplot(121),plt.imshow(img,cmap=plt.cm.gray),plt.title('原图')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(result,cmap = plt.cm.gray),plt.title('Sobel滤波后结果')

plt.xticks([]), plt.yticks([])

plt.show()

深度学习的边缘检测 边缘检测算法的应用_算法_03

将上述代码中计算sobel算子的部分中将ksize设为-1,就是利用Scharr进行边缘检测。

x = cv.Sobel(img, cv.CV_16S, 1, 0, ksize = -1)

y = cv.Sobel(img, cv.CV_16S, 0, 1, ksize = -1)

深度学习的边缘检测 边缘检测算法的应用_计算机视觉_04

3 Laplacian算子

深度学习的边缘检测 边缘检测算法的应用_opencv_05

API:

laplacian = cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])

参数:

  • Src: 需要处理的图像,
  • Ddepth: 图像的深度,-1表示采用的是原图像相同的深度,目标图像的深度必须大于等于原图像的深度;
  • ksize:算子的大小,即卷积核的大小,必须为1,3,5,7。

示例:

import cv2 as cv

import numpy as np

from matplotlib import pyplot as plt

# 1 读取图像

img = cv.imread('./image/horse.jpg',0)

# 2 laplacian转换

result = cv.Laplacian(img,cv.CV_16S)

Scale_abs = cv.convertScaleAbs(result)

# 3 图像展示

plt.figure(figsize=(10,8),dpi=100)

plt.subplot(121),plt.imshow(img,cmap=plt.cm.gray),plt.title('原图')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(Scale_abs,cmap = plt.cm.gray),plt.title('Laplacian检测后结果')

plt.xticks([]), plt.yticks([])

plt.show()

深度学习的边缘检测 边缘检测算法的应用_深度学习的边缘检测_06

4 Canny边缘检测

Canny 边缘检测算法是一种非常流行的边缘检测算法,是 John F. Canny 于 1986年提出的,被认为是最优的边缘检测算法。

4.1 原理

Canny边缘检测算法是由4步构成,分别介绍如下:

  • 第一步:噪声去除
    由于边缘检测很容易受到噪声的影响,所以首先使用$5*5$高斯滤波器去除噪声,在图像平滑那一章节中已经介绍过。
  • 第二步:计算图像梯度

深度学习的边缘检测 边缘检测算法的应用_计算机视觉_07

  • 第三步:非极大值抑制

在获得梯度的方向和大小之后,对整幅图像进行扫描,去除那些非边界上的点。对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的。如下图所示:

深度学习的边缘检测 边缘检测算法的应用_计算机视觉_08

A点位于图像的边缘,在其梯度变化方向,选择像素点B和C,用来检验A点的梯度是否为极大值,若为极大值,则进行保留,否则A点被抑制,最终的结果是具有“细边”的二进制图像。

  • 第四步:滞后阈值

现在要确定真正的边界。 我们设置两个阈值: minVal 和 maxVal。 当图像的灰度梯度高于 maxVal 时被认为是真的边界, 低于 minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。如下图:

深度学习的边缘检测 边缘检测算法的应用_深度学习的边缘检测_09

如上图所示,A 高于阈值 maxVal 所以是真正的边界点,C 虽然低于 maxVal 但高于 minVal 并且与 A 相连,所以也被认为是真正的边界点。而 B 就会被抛弃,因为低于 maxVal 而且不与真正的边界点相连。所以选择合适的 maxVal 和 minVal 对于能否得到好的结果非常重要。

4.2 应用

在OpenCV中要实现Canny检测使用的API:

canny = cv2.Canny(image, threshold1, threshold2)

参数:

  • image:灰度图,
  • threshold1: minval,较小的阈值将间断的边缘连接起来
  • threshold2: maxval,较大的阈值检测图像中明显的边缘

示例:

import cv2 as cv

import numpy as np

from matplotlib import pyplot as plt

# 1 图像读取

img = cv.imread('./image/horse.jpg',0)

# 2 Canny边缘检测

lowThreshold = 0

max_lowThreshold = 100

canny = cv.Canny(img, lowThreshold, max_lowThreshold)

# 3 图像展示

plt.figure(figsize=(10,8),dpi=100)

plt.subplot(121),plt.imshow(img,cmap=plt.cm.gray),plt.title('原图')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(canny,cmap = plt.cm.gray),plt.title('Canny检测后结果')

plt.xticks([]), plt.yticks([])

plt.show()

深度学习的边缘检测 边缘检测算法的应用_边缘检测_10


总结

  1. 边缘检测的原理
  • 基于搜索:利用一阶导数的最大值获取边界
  • 基于零穿越:利用二阶导数为0获取边界
  1. Sobel算子
    基于搜索的方法获取边界
    cv.sobel()
    cv.convertScaleAbs()
    cv.addweights()
  2. Laplacian算子
    基于零穿越获取边界
    cv.Laplacian()
  3. Canny算法
    流程:
  • 噪声去除:高斯滤波
  • 计算图像梯度:sobel算子,计算梯度大小和方向
  • 非极大值抑制:利用梯度方向像素来判断当前像素是否为边界点
  • 滞后阈值:设置两个阈值,确定最终的边界

5 算子比较

深度学习的边缘检测 边缘检测算法的应用_opencv_11