C++ STL中的remove和erase函数曾经让我迷惑,同样都是删除,两者有什么区别呢?

 

vector中的remove的作用是将等于value的元素放到vector的尾部,但并不减少vector的size

vector中erase的作用是删除掉某个位置position或一段区域(begin, end)中的元素,减少其size

 

list容器中的remove 成员函数,原型是void remove (const value_type& val);

他的作用是删除list中值与val相同的节点,释放该节点的资源。

 

而list容器中的erase成员函数,原型是iterator erase (iterator position);

作用是删除position位置的节点。这也是与remove不同的地方。

考虑到list::erase是与位置有关,故erase还存在API:   iterator erase (iterator first, iterator last);

 

对于set来说,只有erase API,没有remove API。 erase 的作用是把符合要求的元素都删掉。

(1) void erase (iterator position);
(2) size_type erase (const value_type& val);
(3) void erase (iterator first, iterator last);

  

综上所述,erase一般是要释放资源,真正删除元素的,

而remove主要用在vector中,用于将不符合要求的元素移到容器尾部,而并不删除不符合要求的元素


原文链接:http://hi.baidu.com/tkzlpocleodtxzr/item/3a3a6037fdc8460cceb9fe86

vector中erase是真正删除了元素, 迭代器访问不到了。 algorithm中的remove只是简单的把要remove的元素移到了容器最后面,然后其余元素前移,迭代器还是可以访问到的。因为algorithm通过迭代器操作,不知道容器的内部结构,所以无法做到真正删除。

remove并不真正从容器中删除元素(容器大小并未改变),而是将每一个与value不相等的元素轮番赋值给first之后的空间,返回值FowardIterator 标示出重新整理后的最后元素的下一个位置。所以可以有以下操作:

vector<int> array;
array.erase(remove(array.begin(),array.end(),6),array.end());
删除数组中所有元素等于6的元素


 

原文链接:

C++的STL通过iterator将container和algorithm分离,并通过functor提供高可定制性。iterator可以看作是一种契约,algorithm对iterator进行操作,algorithm很难对container进行直接操作,这是因为algorithm对container所知甚少,一段代码,若未利用操作对象所知全部信息,将难以达到性能之极,并伴随其它种种折中现象。当然,这种“未知性”是必须的——algorithm对于真正的操作对象container不能做出太多假设,若假设过多,何来一个algorithm可以作用若干不同container的妙举,STL强大威力也将受损不少。

啰嗦几句,开个小头,转入正题。 先给出几个关于STL中erase和remove(remove_if等,下称remove类函数)的事实,小小复习:

  1. erase一般作为一个container的成员函数,是真正删除的元素,是物理上的删除
  2. 作为算法部分的remove类函数,是逻辑上的删除,将被删除的元素移动到容器末尾,然后返回新的末尾,此时容器的size不变化
  3. 部分容器提供remove类成员函数,那么代表的是真正物理意义上的删除元素
  4. 如果该容器是vector、string或者deque,使用erase-remove idiom或者erase-remove_if idiom
  5. 如果该容器是list,使用list::remove或者list:remove_if成员函数
  6. 如果该容器是一个associative container,使用asso_con::erase成员函数或者remove_copy_if结合swap等方式
  7. 有一些比较特殊的容器具现,比如vector<bool>等,暂不考虑。

 

更多信息,可以参考《Effective STL》

综上一些信息,可以发现,STL提供给我们的“删除”语义并非真正统一,至少未达到最高层次的统一。有时候从一种容器换为另外一种容器,修修改改总少不了。

下面,提供一个统一的接口,来删除一个容器中的元素,原理较简单,使用编译器通过type deduce获知容器的类型,然后通过type traits在编译器就可以决定函数派送决定。比如,编译器知道当前容器是list,那么就会调用list:remove相关的成员函数,性能?inline当然少不了!代码来源是一个STL的教学视频上得之,做了些自以为是的简单修改,当然,我的修改可能让代码“恶”了,自己简单用了些容器做测试,程序行为正确,用了trace工具跟踪代码,足迹符合预期,当然,重在思想的运用,真正的代码使用还需要经过多次严格测试。

1: //
2: //Source code originally from MSDN Channel 9 Video
3: //Modified by techmush
4: //NOTE: the original code may be perfect, the modified version may be buggy!
5: //Modifies: add string container, add some template parameters, alert some name
6: //            add some notes, code style.
7: //
8:
9: #pragma once
10:
11: #ifndef erasecontainer_h__
12: #define erasecontainer_h__
13:
14: #include <algorithm>
15: #include <deque>
16: #include <forward_list>
17: #include <list>
18: #include <map>
19: #include <set>
20: #include <vector>
21: #include <string>        //string "as" a vector
22: #include <unordered_map>
23: #include <unordered_set>
24:
25: namespace techmush
26: {
27:     namespace detail
28:     {
29:         //erasing behavior like vector: vector, queue, string
30:         struct vector_like_tag
31:         {
32:         };
33:
34:         //erasing behavior like list: list, forward_list
35:         struct list_like_tag
36:         {
37:         };
38:
39:         //erasing behaviod like set: set, map, multiset, multimap, unordered_set, unordered_map
40:         //unordered_multiset, unordered_multimap
41:         struct associative_like_tag
42:         {
43:         };
44:
45:         //type traits for containers
46:         template <typename Cont> struct container_traits;
47:
48:         template <typename Elem, typename Alloc>
49:         struct container_traits<std::vector<Elem,Alloc> >
50:         {
51:             typedef vector_like_tag container_category;
52:         };
53:
54:         template <typename Elem, typename Alloc>
55:         struct container_traits<std::deque<Elem,Alloc> >
56:         {
57:             typedef vector_like_tag container_category;
58:         };
59:
60:         //full specialization traits for string
61:         template <> struct container_traits<std::string>
62:         {
63:             typedef vector_like_tag container_category;
64:         };
65:
66:
67:         template <typename Elem, typename Alloc>
68:         struct container_traits<std::list<Elem,Alloc> >
69:         {
70:             typedef list_like_tag container_category;
71:         };
72:
73:         template <typename Elem, typename Alloc>
74:         struct container_traits<std::forward_list<Elem,Alloc> >
75:         {
76:             typedef list_like_tag container_category;
77:         };
78:
79:         template <typename Key, typename Pred, typename Alloc>
80:         struct container_traits<std::set<Key,Pred,Alloc> >
81:         {
82:             typedef associative_like_tag container_category;
83:
84:         };
85:
86:         //If a multiset contains duplicates, you can't use erase()
87:         //to remove only the first element of these duplicates.
88:         template <typename Key, typename Pred, typename Alloc>
89:         struct container_traits<std::multiset<Key,Pred,Alloc> >
90:         {
91:             typedef associative_like_tag container_category;
92:         };
93:
94:         template <typename Key, typename Hash, typename Equal, typename Alloc>
95:         struct container_traits<std::unordered_set<Key,Hash,Equal,Alloc> >
96:         {
97:             typedef associative_like_tag container_category;
98:         };
99:
100:         template <typename Key, typename Hash, typename Equal, typename Alloc>
101:         struct container_traits<std::unordered_multiset<Key,Hash,Equal,Alloc> >
102:         {
103:             typedef associative_like_tag container_category;
104:         };
105:
106:         template <typename Key, typename Val, typename Pred, typename Alloc>
107:         struct container_traits<std::map<Key,Val,Pred,Alloc> >
108:         {
109:             typedef associative_like_tag container_category;
110:         };
111:
112:         template <typename Key, typename Val, typename Pred, typename Alloc>
113:         struct container_traits<std::multimap<Key,Val,Pred,Alloc> >
114:         {
115:             typedef associative_like_tag container_category;
116:         };
117:
118:         template <typename Key, typename Val, typename Hash, typename Equal, typename Alloc>
119:         struct container_traits<std::unordered_map<Key,Val,Hash,Equal,Alloc> >
120:         {
121:             typedef associative_like_tag container_category;
122:         };
123:
124:         template <typename Key, typename Val, typename Hash, typename Equal, typename Alloc>
125:         struct container_traits<std::unordered_multimap<Key,Val,Hash,Equal,Alloc> >
126:         {
127:             typedef associative_like_tag container_category;
128:         };
129:
130:
131:         //for vector-like containers, use the erase-remove idiom
132:         template <typename Cont, typename Elem>
133:         inline void erase_helper(Cont& c, const Elem& x, vector_like_tag /*ignored*/)
134:         {
135:             c.erase(std::remove(c.begin(), c.end(), x), c.end());
136:         }
137:
138:         //for vector-like containers, use the erase-remove_if idiom
139:         template <typename Cont, typename Pred>
140:         inline void erase_if_helper(Cont& c, Pred p, vector_like_tag)
141:         {
142:             c.erase(std::remove_if(c.begin(), c.end(), p), c.end());
143:         }
144:
145:         //for list-like containers, use the remove member-function
146:         template <typename Cont, typename Elem>
147:         inline void erase_helper(Cont& c, const Elem& x, list_like_tag)
148:         {
149:             c.remove(x);
150:         }
151:
152:         //for list-like containers, use the remove_if member-function
153:         template <typename Cont, typename Pred>
154:         inline void erase_if_helper(Cont& c, Pred p, list_like_tag)
155:         {
156:             c.remove_if(p);
157:         }
158:
159:         //for associative containers, use the erase member-function
160:         template <typename Cont, typename Elem>
161:         inline void erase_helper(Cont& c, const Elem& x, associative_like_tag)
162:         {
163:             c.erase(x);
164:         }
165:
166:         //When an element of a container is erased, all iterators that point to that
167:         //element are invalidated. Once c.erase(it) reuturns, it has been invalidated.
168:         template <typename Cont, typename Pred>
169:         inline void erase_if_helper(Cont& c, Pred p, associative_like_tag)
170:         {
171:             for (auto it = c.begin(); it != c.end(); /*nothing*/)
172:             {
173:                 if (p(*it))
174:                     c.erase(it++);    //Rebalance the tree
175:                                     //Must have an iterator to the next element
176:                 else                //of c before call erase
177:                     ++ it;
178:             }
179:         }
180:     }
181:
182:     //Interface function for erase
183:     template <typename Cont, typename Elem>
184:     inline void erase(Cont& c, const Elem& x)
185:     {
186:         detail::erase_helper(c, x, typename /*a type*/detail::container_traits<Cont>::container_category());
187:     }
188:
189:
190:     //Interface function for erase_if
191:     template <typename Cont, typename Pred>
192:     inline void erase_if(Cont& c, Pred p)
193:     {
194:         detail::erase_if_helper(c, p, typename detail::container_traits<Cont>::container_category());
195:     }
196: }
197: #endif // erasecontainer_h__

当然,既然选择了C++,就代表选择了折腾(这不也是种乐趣么!),如果容器内是raw pointer呢,你如果想删除,那还得手动去释放资源,万一又有异常发生,呃……好吧,使用auto_ptrs,可以么?(COAP!当然,也可以冒险使用之,注意auto_ptrs的行为特性)。嗯,使用shared_ptrs,较安全,c++ox或者boost。有时候,不得不用指针,因为我想虚多态动绑定。