任何事情都是相对的,就像Rust给我们的印象一直是安全、快速,但实际上,完全的安全是不可能实现的。因此,Rust中也是会有不安全的代码的。
严格来讲,Rust语言可以分为Safe Rust和Unsafe Rust。Unsafe Rust是Safe Rust的超集。在Unsafe Rust中并不会禁用任何的安全检查,Unsafe Rust出现的原因是为了让开发者可以做一些更加底层的操作。这些事情本身也是不安全的,如果仍然要进行Rust的安全检查,那么就无法进行这些操作。
在进行下面这5种操作时,Unsafe Rust不会进行安全检查。
- 解引用原生指针
- 调用unsafe的函数或方法
- 访问或修改可变的静态变量
- 实现unsafe的trait
- 读写联合体中的字段
基础语法
Unsafe Rust的关键字是unsafe,它可以用来修饰函数、方法和trait,也可以用来标记代码块。
标准库中也有不少函数是unsafe的。例如String中的from_utf8_unchecked()
函数。它的定义如下:
pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
String { vec: bytes }
}
这个函数被标记为unsafe的原因是函数并没有检查传入参数是否是合法的UTF-8序列。也就是提醒使用者注意,使用这个函数要自己保证参数的合法性。
用unsafe标记的trait也比较常见,在前面我们见过的Send和Sync都是unsafe的trait。它们被用来保证线程安全, 将其标记为unsafe是告诉开发者,如果自己实现这两个trait,那么代码就会有安全风险。
我们在调用unsafe函数或方法时,需要使用unsafe代码块。
fn main() {
let sparkle_heart = vec![240, 159, 146, 150];
let sparkle_heart = unsafe {
String::from_utf8_unchecked(sparkle_heart)
};
assert_eq!("💖", sparkle_heart);
}
在了解了unsafe的基础语法之后,我们再来具体看看前面提到的5种操作。
解引用原生指针
Rust的原生指针分为两种:可变类型*mut T
和不可变类型*const T
。
与引用和智能指针不同,原生指针具有以下特性:
- 可以不遵循借用规则,在同一代码块中可以同时出现可变和不可变指针,也可以同时有多个可变指针
- 不保证指向有效内存
- 允许是null
- 不会自动清理内存
由这些特性可以看出,原生指针并不受Rust那一套安全规则的限制,因此,解引用原生指针是一种不安全的操作。换句话说,我们应该把这种操作放在unsafe代码块中。下面这段代码就展示了原生指针的第一条特性,以及如何解引用原生指针。
fn main() {
let mut num = 5;
let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;
unsafe {
println!("r1 is: {}", *r1);
println!("r2 is: {}", *r2);
}
}
在Rust编程中,原生指针常被用作和C语言打交道,原生指针有一些特有的方法,例如可以用is_null()
来判断原生指针是否是空指针,用offset()
来获取指定偏移量的内存地址的内容,使用read()/write()
方法来读写内存等。
调用unsafe的函数或方法
调用unsafe的函数或方法必须放到unsafe代码块中,这点我们在基础知识中已经介绍过。因为函数本身被标记为unsafe,也就意味着调用它可能存在风险。这点无需赘述。
访问或修改可变的静态变量
对于不可变的静态变量,我们访问它不会存在任何安全问题,但是对于可变的静态变量而言,如果我们在多线程中都访问同一个变量,那么就会造成数据竞争。这当然也是一种不安全的操作。所以要放到unsafe代码块中,此时线程安全应由开发者自己来保证。
static mut COUNTER: u32 = 0;
fn add_to_count(inc: u32) {
unsafe {
COUNTER += inc;
}
}
fn main() {
add_to_count(3);
unsafe {
println!("COUNTER: {}", COUNTER);
}
}
在这个例子中我们没有使用多线程,这里只是想展示一下如何访问和修改可变静态变量。
实现unsafe的trait
当trait中包含一个或多个编译器无法验证其安全性的方法时,这个trait就必须被标记为unsafe。而想要实现unsafe的trait,首先在实现代码块的关键字impl
前也要加上unsafe标记。其次,无法被编译器验证安全性的方法,其安全性必须由开发者自己来保证。
前面我们也提到了,常见的unsafe的trait有Send和Sync这两个。
读写联合体中的字段
Rust中的Union联合体和Enum相似。我们可以使用union关键字来定义一个联合体。
union MyUnion {
i: i32,
f: f32,
}
fn main() {
let my_union = MyUnion{i: 3};
unsafe {
println!("{}", my_union.i);
}
}
在初始化时,我们每次只能指定一个字段的值。这就造成我们在访问联合体中的字段时,有可能会访问到未定义的字段。因此,Rust让我们把访问操作放到unsafe代码块中,以此来警示我们必须自己保证程序的安全性。
总结
本文我们聊了Unsafe Rust的一些使用场景和使用方法。你只需要记住Unsafe的5种操作就好,在遇到这些操作时,一定要使用unsafe代码块。unsafe代码块不光是为了“骗”过编译器,要时刻提醒自己,unsafe代码块中的程序要由开发者自己保证其正确性。
- 解引用原生指针
- 调用unsafe的函数或方法
- 访问或修改可变的静态变量
- 实现unsafe的trait
- 读写联合体中的字段