Java原子类
- 作用
- 原子类有哪些
- 基本类型的原子类
- 源码分析(实现原理)
- Usage
- 引用类型的原子类
- 源码分析(实现原理)
- 原子的updater
- 源码分析(实现原理)
- 其他
作用
原子类的目的就是在并发环境下保证线程安全,并且保证效率。
原子类有哪些
Java的原子类在java.util.concurrent.atomic包下,包内有16个类(jdk8)
基本类型的原子类
- AtomicBoolean
- AtomicInteger
- AtomicLong
源码分析(实现原理)
以AutomicInteger为例,分析源码
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
//offset,value的偏移量,用来计算CAS中的V
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
//成员变量value声明为volatile类型,说明了多线程下的可见性,即任何一个线程的修改,在其它线程中都会被立刻看到
private volatile int value;
public AtomicInteger(int initialValue) {
value = initialValue;
}
public AtomicInteger() {
}
public final int get() {
return value;
}
public final void set(int newValue) {
value = newValue;
}
public final void lazySet(int newValue) {
unsafe.putOrderedInt(this, valueOffset, newValue);
}
//获取当前值,set新值,通过调用unsafe的getAndSetInt方法
public final int getAndSet(int newValue) {
return unsafe.getAndSetInt(this, valueOffset, newValue);
}
//没看出来和下一个方法有什么区别,成功后返回期望值
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
public final boolean weakCompareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
//先get,然后自增
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
//先get,然后自减
public final int getAndDecrement() {
return unsafe.getAndAddInt(this, valueOffset, -1);
}
//先get,然后add,与上几个方法类似,调用unsafe.getAndInt
public final int getAndAdd(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta);
}
//与之前方法相反,注意返回值,实现的很巧妙
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
public final int decrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
}
public final int addAndGet(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
}
//顾名思义,先获取值再更新。直到CAS成功,返回prev
public final int getAndUpdate(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return prev;
}
//与上面方法类似,返回值不同
public final int updateAndGet(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return next;
}
public final int getAndAccumulate(int x,
IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return prev;
}
public final int accumulateAndGet(int x,
IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return next;
}
public String toString() {
return Integer.toString(get());
}
}
Usage
试用一下,下面的代码可以看出,经过多次运行,Demo的值都是100,可以比较充分地证明AtomicInteger是线程安全的。
package atomicClassUsage;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class Demo extends AtomicInteger implements Runnable{
public Demo(int i){
super(i);
}
@Override
public void run() {
this.addAndGet(1);
}
public static void main(String[] args) throws Exception {
ThreadPoolExecutor pool = new ThreadPoolExecutor(10,100,0, TimeUnit.SECONDS, new LinkedBlockingDeque<>());
Demo demo = new Demo(0);
for (int i = 0; i < 100; i++) {
pool.execute(demo);
}
TimeUnit.SECONDS.sleep(1);
System.out.println(demo.get());
}
}
引用类型的原子类
源码分析(实现原理)
与基本类型类似,引用类型的原子类也是基于Unsafe类实现的。这里不做赘述
原子的updater
对字段更新的有AtomicIntegerFieldUpdater、AtomicLongFieldUpdater、AtomicReferenceFieldUpdater
源码分析(实现原理)
下面以AtomicIntegerFieldUpdater为例介绍
public final int getAndSet(T obj, int newValue) {
accessCheck(obj);
return U.getAndSetInt(obj, offset, newValue);
}
public final int getAndAdd(T obj, int delta) {
accessCheck(obj);
return U.getAndAddInt(obj, offset, delta);
}
以这两个方法为例,都是调用native方法实现,通过传入偏移量参数和新值进行CAS操作。
public static <U> AtomicIntegerFieldUpdater<U> newUpdater(Class<U> tclass,
String fieldName) {
return new AtomicIntegerFieldUpdaterImpl<U>
(tclass, fieldName, Reflection.getCallerClass());
}
上面代码是构造方法,传入String类型的field是要进行反射吗?
AtomicIntegerFieldUpdaterImpl(final Class<T> tclass,
final String fieldName,
final Class<?> caller) {
final Field field;
final int modifiers;
try {
field = AccessController.doPrivileged(
new PrivilegedExceptionAction<Field>() {
public Field run() throws NoSuchFieldException {
return tclass.getDeclaredField(fieldName);
}
});
modifiers = field.getModifiers();
sun.reflect.misc.ReflectUtil.ensureMemberAccess(
caller, tclass, null, modifiers);
ClassLoader cl = tclass.getClassLoader();
ClassLoader ccl = caller.getClassLoader();
if ((ccl != null) && (ccl != cl) &&
((cl == null) || !isAncestor(cl, ccl))) {
sun.reflect.misc.ReflectUtil.checkPackageAccess(tclass);
}
} catch (PrivilegedActionException pae) {
throw new RuntimeException(pae.getException());
} catch (Exception ex) {
throw new RuntimeException(ex);
}
可以看到,调用doPrivileged方法来拿到field;
public static native <T> T
doPrivileged(PrivilegedExceptionAction<T> action)
throws PrivilegedActionException;
这个方法是native的,与系统权限有关。上一段代码可以看出,field确实是通过反射得到的。对于更新的方法与前面类似,Unsafe实现,也不赘述了。
其他
没有说到的原子类有用于更新数组的,Double类型的,个人猜测用法和实现原理与前面提到的基本类似,原子类先了解到这吧,以后学到新的知识再来补充。