1. 索引结构
要搞明白这个问题,需要大家首先明白 MySQL 中索引存储的数据结构。这个其实很多小伙伴可能也都听说过,B+Tree 嘛!
B+Tree 是什么?那你得先明白什么是 B-Tree,来看如下一张图:
前面是 B-Tree,后面是 B+Tree,两者的区别在于:
- B-Tree 中,所有节点都会带有指向具体记录的指针;B+Tree 中只有叶子结点会带有指向具体记录的指针。
- B-Tree 中不同的叶子之间没有连在一起;B+Tree 中所有的叶子结点通过指针连接在一起。
- B-Tree 中可能在非叶子结点就拿到了指向具体记录的指针,搜索效率不稳定;B+Tree 中,一定要到叶子结点中才可以获取到具体记录的指针,搜索效率稳定。
基于上面两点分析,我们可以得出如下结论:
- B+Tree 中,由于非叶子结点不带有指向具体记录的指针,所以非叶子结点中可以存储更多的索引项,这样就可以有效降低树的高度,进而提高搜索的效率。
- B+Tree 中,叶子结点通过指针连接在一起,这样如果有范围扫描的需求,那么实现起来将非常容易,而对于 B-Tree,范围扫描则需要不停的在叶子结点和非叶子结点之间移动。
对于第一点,一个 B+Tree 可以存多少条数据呢?以主键索引的 B+Tree 为例(二级索引存储数据量的计算原理类似,但是叶子节点和非叶子节点上存储的数据格式略有差异),我们可以简单算一下。
计算机在存储数据的时候,最小存储单元是扇区,一个扇区的大小是 512 字节,而文件系统(例如 XFS/EXT4)最小单元是块,一个块的大小是 4KB。InnoDB 引擎存储数据的时候,是以页为单位的,每个数据页的大小默认是 16KB,即四个块。
基于这样的知识储备,我们可以大致算一下一个 B+Tree 能存多少数据。
假设数据库中一条记录是 1KB,那么一个页就可以存 16 条数据(叶子结点);对于非叶子结点存储的则是主键值+指针,在 InnoDB 中,一个指针的大小是 6 个字节,假设我们的主键是 bigint ,那么主键占 8 个字节,当然还有其他一些头信息也会占用字节我们这里就不考虑了,我们大概算一下,小伙伴们心里有数即可:
16*1024/(8+6)=1170
即一个非叶子结点可以指向 1170 个页,那么一个三层的 B+Tree 可以存储的数据量为:
1170*1170*16=21902400
可以存储 2100万 条数据。
在 InnoDB 存储引擎中,B+Tree 的高度一般为 2-4 层,这就可以满足千万级的数据的存储,查找数据的时候,一次页的查找代表一次 IO,那我们通过主键索引查询的时候,其实最多只需要 2-4 次 IO 操作就可以了。
大家先搞明白这个 B+Tree。
2. 两类索引
大家知道,MySQL 中的索引有很多中不同的分类方式,可以按照数据结构分,可以按照逻辑角度分,也可以按照物理存储分,其中,按照物理存储方式,可以分为聚簇索引和非聚簇索引。
我们日常所说的主键索引,其实就是聚簇索引(Clustered Index);主键索引之外,其他的都称之为非主键索引,非主键索引也被称为二级索引(Secondary Index),或者叫作辅助索引。
对于主键索引和非主键索引,使用的数据结构都是 B+Tree,唯一的区别在于叶子结点中存储的内容不同:
- 主键索引的叶子结点存储的是一行完整的数据。
- 非主键索引的叶子结点存储的则是主键值。
这就是两者最大的区别。
所以,当我们需要查询的时候:
- 如果是通过主键索引来查询数据,例如
select * from user where id=100
,那么此时只需要搜索主键索引的 B+Tree 就可以找到数据。 - 如果是通过非主键索引来查询数据,例如
select * from user where username='javaboy'
,那么此时需要先搜索 username 这一列索引的 B+Tree,搜索完成后得到主键的值,然后再去搜索主键索引的 B+Tree,就可以获取到一行完整的数据。
对于第二种查询方式而言,一共搜索了两棵 B+Tree,第一次搜索 B+Tree 拿到主键值后再去搜索主键索引的 B+Tree,这个过程就是所谓的回表。
从上面的分析中我们也能看出,通过非主键索引查询要扫描两棵 B+Tree,而通过主键索引查询只需要扫描一棵 B+Tree,所以如果条件允许,还是建议在查询中优先选择通过主键索引进行搜索。
3. 一定会回表吗?
那么不用主键索引就一定需要回表吗?
不一定!
如果查询的列本身就存在于索引中,那么即使使用二级索引,一样也是不需要回表的。
举个例子,我有如下一张表:
uname 和 address 字段组成了一个复合索引,那么此时,虽然这是一个二级索引,但是索引树的叶子节点中除了保存主键值,也保存了 address 的值。
我们来看如下分析:
可以看到,此时使用到了 uname 索引,但是最后的 Extra 的值为 Using index
,这就表示用到了索引覆盖扫描(覆盖索引),此时直接从索引中过滤不需要的记录并返回命中的结果,这一步是在 MySQL 服务器层完成的,并且不需要回表。
4. 扩展
基于第一、二小节的分析,我们再来捋一捋为什么在数据库中建议使用自增主键。
- 自增主键往往占用空间比较小,int 占 4 个字节,bigint 占 8 个字节。由于二级索引的叶子节点存储的就是主键,所以如果主键占用空间小,意味着二级索引的叶子节点将来占用的空间小(间接降低 B+Tree 的高度,提高搜索效率)。
- 自增主键插入的时候比较快,直接插入即可,不会涉及到叶子节点分裂等问题(不需要挪动其他记录);而其他非自增主键插入的时候,可能要插入到两个已有的数据中间,就有可能导致叶子节点分裂等问题,插入效率低(要挪动其他记录)。