算法代码分析

(一)算法分析

  在计算机中进程执行时需要操作系统为其分配各种资源,比如内存空间,寄存器等等,但在计算机中不可能只有一个进程,因此操作系统需要为这些进程合理分配资源,使其在运行的时候不发生冲突。时间片轮转就是一个这样的算法,使其每个进程轮流使用cpu资源,不发生冲突。

(二)代码分析

  头文件代码(mypcb.h):

        



#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*8

/* CPU-specific state of this task */
struct Thread {
    unsigned long        ip;
    unsigned long        sp;
};

typedef struct PCB{
    int pid;
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    char stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long    task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);



这段代码中首先是两个结构体,在Tread中ip为指令指针(程序执行的位置),sp为进程执行时的堆栈栈顶位置,PCB为进程的信息包括进程ID,进程状态,进程的堆栈空间大小,还有thread,进程入口,还有一个为指向下一个进程的指针,my_schedule为调度函数的声明。

 



#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>


#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;

void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = -1;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movl %1,%%esp\n\t"     /* set task[pid].thread.sp to esp */
        "pushl %1\n\t"             /* push ebp */
        "pushl %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to eip */
        "popl %%ebp\n\t"
        : 
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );
}   
void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}



在这段代码中代码的执行入口为void __init my_start_kernel(void),我们先声明了三个外部变量,分别为进程数组,当前进程,和是否需要调度的标志位(1为需要调度,0为不需要),我们先设置0号进程的信息,注意task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;此句的意思是将process函数的指针赋给ip和entry以便使系统去哪寻找进程入口,其他的赋值信息很简单,不再多说,赋完值后,把当前进程设成进程0,从零开始执行,后边的汇编代码的目的是调到process函数,启动进程。process函数为具体执行的内容i每次增大时10000000时打印进程id并且判断进程是否调度。



#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
#if 1
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
#endif
    return;      
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
        /* switch to next process */
        asm volatile(    
            "pushl %%ebp\n\t"         /* save ebp */
            "movl %%esp,%0\n\t"     /* save esp */
            "movl %2,%%esp\n\t"     /* restore  esp */
            "movl $1f,%1\n\t"       /* save eip */    
            "pushl %3\n\t" 
            "ret\n\t"                 /* restore  eip */
            "1:\t"                  /* next process start here */
            "popl %%ebp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
     
    }
    else
    {
        next->state = 0;
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
        /* switch to new process */
        asm volatile(    
            "pushl %%ebp\n\t"         /* save ebp */
            "movl %%esp,%0\n\t"     /* save esp */
            "movl %2,%%esp\n\t"     /* restore  esp */
            "movl %2,%%ebp\n\t"     /* restore  ebp */
            "movl $1f,%1\n\t"       /* save eip */    
            "pushl %3\n\t" 
            "ret\n\t"                 /* restore  eip */
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        );          
    }   
    return;    
}



my_timer_handler函数是中断函数,每当它执行的时候说明进程已经用完自己的时间,该调度了。my_schedule为调度函数,next为下一个进程,prev为当前进程,调度时为两种情况,一个是要调度的为执行过的进程,另一个为没有执行的。第一种情况(if)是将自己的ebp赋给esp,然后将IP赋给ebp在执行进程,而第二种情况就有不同,是自己载入自己的基地址赋给esp。



实验过程与结果

java多层时间轮有哪些实现_#include

java多层时间轮有哪些实现_python_02




总结

  对于进程切换的关键点为保存自己的信息,然后载入下一个指令,这个具体体现在汇编代码中,下一篇文章会分析一下调度算法里的汇编代码,指出他们是如何保存信息的,并且切换进程的。