spark特性:
提供了java scala python 和R的api支持。
在生产环境上扩展超过8000个节点。
可以在内存中缓存交互中间数据的能力:提炼一个工作集合,缓存它,反复查询。
低级别的水平伸缩的数据检索可以通过scala或者python 命令行进行交互。
高级别的流处理库spark streaming可以处理流数据。
通过spark sql支持结构化的关系查询处理(sql)。
机器学习和图形处理的高级别库。
spark工程构成:
1. spark核心及RRDs(Resilient Distributed Datasets)
spark核心是整个工程的基础,它提供了分布式任务的分发、调度和基本的IO功能。最基本的抽象就是RRDs,一个跨机器的分区数据的逻辑集合。RDDs可以由引用的外部存储系统创建,或者在已存在的RDDs上应用粗粒度变换(如map,filter,reduce,join等)。
RDDs抽象接口由特定语言java、python、scala 的api接口暴露,如在本地数据集合一样。这简化了编程的复杂性,因为应用操作RDDs的方式和操作本地数据集合类似。
2. spark sql
spark sql组件位于spark核心之上,它引入了名称为SchemaRDD的新的数据抽象。SchemaRDD支持结构化和半结构化数据。spark sql 提供了基于特定语言scala,java,python操作schemaRDDs。它也提供了通过命令行和odbc/jdbc服务器来操作sql语句的支持。从Spark 1.3开始,SchemaRDD命名为DataFrame。
3. spark streaming
spark streaming利用spark核心的快速调度能力来执行流分析。它小批量采集数据并且对这些小批量数据执行RDD转换。这种设计使在一台引擎中,批量分析的应用程序代码也可以用在流分析的批量分析中。
4. MLLIb机器学习库
MLLib是一个位于spark之上的分布式系统学习框架,因其基于分布式内存的spark架构,它的速度达到相同版本的基于磁盘的apache Mahout的9倍,扩展性甚至优于Vowpal Wabbit。它实现了很多通用机器学习和分析算法来简化大规模机器学习管道,包括:
summary statistics, correlations, stratified sampling, hypothesis testing, random data generation;
classification and regression: SVMs, logistic regression, linear regression, decision trees, naive Bayes;
collaborative filtering: alternating least squares (ALS);
clustering: k-means, Latent Dirichlet Allocation (LDA);
dimensionality reduction: singular value decomposition (SVD), principal component analysis (PCA);
feature extraction and transformation;
optimization primitives: stochastic gradient descent, limited-memory BFGS (L-BFGS);
5. GraphX
GraphX是一个位于spark之上的分布式图形处理框架。
spark源码结构
整体上Spark分为以下几个主要的子模块:
deploy: deply模块包括Master,Work和Client,参见architecture图的最上 部分。deploy主要负责启动和调度用户实现的Spark application并且分配资源给用户 application,类似于Hadoop YARN框架。
scheduler: scheduler主要负责调度用户application内的tasks,根据部署方式的不 同Spark实现了多种不同的scheduler,包括LocalScheduler,ClusterScheduler等 。
rdd: rdd类似于一个分布式的数据集,用户可以根据rdd所提供的api进行数据集的 操作,rdd模块是用户交互的主要模块。
storage: storage模块主要负责数据集,也就是rdd的存取。根据设定的不同,数 据可以保存在内存、磁盘或是两者。Spark与Hadoop MapReduce最大的不同在于MapReduce 将数据保存在HDFS上,而Spark则由自己的存储系统。
概述
什么是Spark
◆ Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。其架构如下图所示:
Spark与Hadoop的对比
◆ Spark的中间数据放到内存中,对于迭代运算效率更高。
Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。
◆ Spark比Hadoop更通用。
Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, mapValues, sort,partionBy等多种操作类型,Spark把这些操作称为Transformations。同时还提供Count, collect, reduce, lookup, save等多种actions操作。
这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的Data Shuffle一种模式。用户可以命名,物化,控制中间结果的存储、分区等。可以说编程模型比Hadoop更灵活。
不过由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
◆ 容错性。
在分布式数据集计算时通过checkpoint来实现容错,而checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错。
◆ 可用性。
Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性。
Spark与Hadoop的结合
◆ Spark可以直接对HDFS进行数据的读写,同样支持Spark on YARN。Spark可以与MapReduce运行于同集群中,共享存储资源与计算,数据仓库Shark实现上借用Hive,几乎与Hive完全兼容。
Spark的适用场景
◆ Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小
◆ 由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
◆ 总的来说Spark的适用面比较广泛且比较通用。
运行模式
◆ 本地模式
◆ Standalone模式
◆ Mesoes模式
◆ yarn模式
Spark生态系统
◆ Shark ( Hive on Spark): Shark基本上就是在Spark的框架基础上提供和Hive一样的H iveQL命令接口,为了最大程度的保持和Hive的兼容性,Shark使用了Hive的API来实现query Parsing和 Logic Plan generation,最后的PhysicalPlan execution阶段用Spark代替Hadoop MapReduce。通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。
◆ Spark streaming: 构建在Spark上处理Stream数据的框架,基本的原理是将Stream数据分成小的时间片断(几秒),以类似batch批量处理的方式来处理这小部分数据。Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100ms+)可以用于实时计算,另一方面相比基于Record的其它处理框架(如Storm),RDD数据集更容易做高效的容错处理。此外小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法。方便了一些需要历史数据和实时数据联合分析的特定应用场合。
◆ Bagel: Pregel on Spark,可以用Spark进行图计算,这是个非常有用的小项目。Bagel自带了一个例子,实现了Google的PageRank算法。
在业界的使用
◆ Spark项目在2009年启动,2010年开源, 现在使用的有:Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind, Yahoo! Research & others, 淘宝等,豆瓣也在使用Spark的python克隆版Dpark。
Spark核心概念
Resilient Distributed Dataset (RDD)弹性分布数据集
◆ RDD是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现。RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现。RDD必须是可序列化的。RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。这对于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。
◆ RDD的特点:
它是在集群节点上的不可变的、已分区的集合对象。
通过并行转换的方式来创建如(map, filter, join, etc)。
失败自动重建。
可以控制存储级别(内存、磁盘等)来进行重用。
必须是可序列化的。
是静态类型的。
◆ RDD的好处
RDD只能从持久存储或通过Transformations操作产生,相比于分布式共享内存(DSM)可以更高效实现容错,对于丢失部分数据分区只需根据它的lineage就可重新计算出来,而不需要做特定的Checkpoint。
RDD的不变性,可以实现类Hadoop MapReduce的推测式执行。
RDD的数据分区特性,可以通过数据的本地性来提高性能,这与Hadoop MapReduce是一样的。
RDD都是可序列化的,在内存不足时可自动降级为磁盘存储,把RDD存储于磁盘上,这时性能会有大的下降但不会差于现在的MapReduce。
◆ RDD的存储与分区
用户可以选择不同的存储级别存储RDD以便重用。
当前RDD默认是存储于内存,但当内存不足时,RDD会spill到disk。
RDD在需要进行分区把数据分布于集群中时会根据每条记录Key进行分区(如Hash 分区),以此保证两个数据集在Join时能高效。
◆ RDD的内部表示
在RDD的内部实现中每个RDD都可以使用5个方面的特性来表示:
分区列表(数据块列表)
计算每个分片的函数(根据父RDD计算出此RDD)
对父RDD的依赖列表
对key-value RDD的Partitioner【可选】
每个数据分片的预定义地址列表(如HDFS上的数据块的地址)【可选】
◆ RDD的存储级别
RDD根据useDisk、useMemory、deserialized、replication四个参数的组合提供了11种存储级别:
val NONE = new StorageLevel(false, false, false) val DISK_ONLY = new StorageLevel(true, false, false) val DISK_ONLY_2 = new StorageLevel(true, false, false, 2) val MEMORY_ONLY = new StorageLevel(false, true, true) val MEMORY_ONLY_2 = new StorageLevel(false, true, true, 2) val MEMORY_ONLY_SER = new StorageLevel(false, true, false) val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, 2) val MEMORY_AND_DISK = new StorageLevel(true, true, true) val MEMORY_AND_DISK_2 = new StorageLevel(true, true, true, 2) val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false) val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, 2)
◆ RDD定义了各种操作,不同类型的数据由不同的RDD类抽象表示,不同的操作也由RDD进行抽实现。
RDD的生成
◆ RDD有两种创建方式:
1、从Hadoop文件系统(或与Hadoop兼容的其它存储系统)输入(例如HDFS)创建。
2、从父RDD转换得到新RDD。
◆ 下面来看一从Hadoop文件系统生成RDD的方式,如:val file = spark.textFile("hdfs://..."),file变量就是RDD(实际是HadoopRDD实例),生成的它的核心代码如下:
// SparkContext根据文件/目录及可选的分片数创建RDD, 这里我们可以看到Spark与Hadoop MapReduce很像 // 需要InputFormat, Key、Value的类型,其实Spark使用的Hadoop的InputFormat, Writable类型。 def textFile(path: String, minSplits: Int = defaultMinSplits): RDD[String] = { hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], minSplits) .map(pair => pair._2.toString) } // 根据Hadoop配置,及InputFormat等创建HadoopRDD new HadoopRDD(this, conf, inputFormatClass, keyClass, valueClass, minSplits)
◆ 对RDD进行计算时,RDD从HDFS读取数据时与Hadoop MapReduce几乎一样的:
RDD的转换与操作
◆ 对于RDD可以有两种计算方式:转换(返回值还是一个RDD)与操作(返回值不是一个RDD)。
◆ 转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。
◆ 操作(Actions) (如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。
◆ 下面使用一个例子来示例说明Transformations与Actions在Spark的使用。
val sc = new SparkContext(master, "Example", System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_TEST_JAR"))) val rdd_A = sc.textFile(hdfs://.....) val rdd_B = rdd_A.flatMap((line => line.split("\\s+"))).map(word => (word, 1)) val rdd_C = sc.textFile(hdfs://.....) val rdd_D = rdd_C.map(line => (line.substring(10), 1)) val rdd_E = rdd_D.reduceByKey((a, b) => a + b) val rdd_F = rdd_B.jion(rdd_E) rdd_F.saveAsSequenceFile(hdfs://....)
Lineage(血统)
◆ 利用内存加快数据加载,在众多的其它的In-Memory类数据库或Cache类系统中也有实现,Spark的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问题时采用的方案。为了保证RDD中数据的鲁棒性,RDD数据集通过所谓的血统关系(Lineage)记住了它是如何从其它RDD中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的备份或者LOG机制,RDD的Lineage记录的是粗颗粒度的特定数据转换(Transformation)操作(filter, map, join etc.)行为。当这个RDD的部分分区数据丢失时,它可以通过Lineage获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了Spark的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。
◆ RDD在Lineage依赖方面分为两种Narrow Dependencies与Wide Dependencies用来解决数据容错的高效性。Narrow Dependencies是指父RDD的每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。Wide Dependencies是指子RDD的分区依赖于父RDD的多个分区或所有分区,也就是说存在一个父RDD的一个分区对应一个子RDD的多个分区。对与Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage方法对与输入节点完好,而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为无法重试,需要向上其祖先追溯看是否可以重试(这就是lineage,血统的意思),Narrow Dependencies对于数据的重算开销要远小于Wide Dependencies的数据重算开销。
容错
◆ 在RDD计算,通过checkpint进行容错,做checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错,默认是logging the updates方式,通过记录跟踪所有生成RDD的转换(transformations)也就是记录每个RDD的lineage(血统)来重新计算生成丢失的分区数据。
资源管理与作业调度
◆ Spark对于资源管理与作业调度可以使用Standalone(独立模式),Apache Mesos及Hadoop YARN来实现。 Spark on Yarn在Spark0.6时引用,但真正可用是在现在的branch-0.8版本。Spark on Yarn遵循YARN的官方规范实现,得益于Spark天生支持多种Scheduler和Executor的良好设计,对YARN的支持也就非常容易,Spark on Yarn的大致框架图。
◆ 让Spark运行于YARN上与Hadoop共用集群资源可以提高资源利用率。
编程接口
◆ Spark通过与编程语言集成的方式暴露RDD的操作,类似于DryadLINQ和FlumeJava,每个数据集都表示为RDD对象,对数据集的操作就表示成对RDD对象的操作。Spark主要的编程语言是Scala,选择Scala是因为它的简洁性(Scala可以很方便在交互式下使用)和性能(JVM上的静态强类型语言)。
◆ Spark和Hadoop MapReduce类似,由Master(类似于MapReduce的Jobtracker)和Workers(Spark的Slave工作节点)组成。用户编写的Spark程序被称为Driver程序,Dirver程序会连接master并定义了对各RDD的转换与操作,而对RDD的转换与操作通过Scala闭包(字面量函数)来表示,Scala使用Java对象来表示闭包且都是可序列化的,以此把对RDD的闭包操作发送到各Workers节点。 Workers存储着数据分块和享有集群内存,是运行在工作节点上的守护进程,当它收到对RDD的操作时,根据数据分片信息进行本地化数据操作,生成新的数据分片、返回结果或把RDD写入存储系统。
Scala
◆ Spark使用Scala开发,默认使用Scala作为编程语言。编写Spark程序比编写Hadoop MapReduce程序要简单的多,SparK提供了Spark-Shell,可以在Spark-Shell测试程序。写SparK程序的一般步骤就是创建或使用(SparkContext)实例,使用SparkContext创建RDD,然后就是对RDD进行操作。如:
val sc = new SparkContext(master, appName, [sparkHome], [jars]) val textFile = sc.textFile("hdfs://.....") textFile.map(....).filter(.....).....
Java
◆ Spark支持Java编程,但对于使用Java就没有了Spark-Shell这样方便的工具,其它与Scala编程是一样的,因为都是JVM上的语言,Scala与Java可以互操作,Java编程接口其实就是对Scala的封装。如:
JavaSparkContext sc = new JavaSparkContext(...); JavaRDD lines = ctx.textFile("hdfs://..."); JavaRDD words = lines.flatMap( new FlatMapFunction<string, string="">() { public Iterable call(String s) { return Arrays.asList(s.split(" ")); } } );
Python
◆ 现在Spark也提供了Python编程接口,Spark使用py4j来实现python与java的互操作,从而实现使用python编写Spark程序。Spark也同样提供了pyspark,一个Spark的python shell,可以以交互式的方式使用Python编写Spark程序。 如:
from pyspark import SparkContext sc = SparkContext("local", "Job Name", pyFiles=['MyFile.py', 'lib.zip', 'app.egg']) words = sc.textFile("/usr/share/dict/words") words.filter(lambda w: w.startswith("spar")).take(5)
使用示例
Standalone模式
◆ 为方便Spark的推广使用,Spark提供了Standalone模式,Spark一开始就设计运行于Apache Mesos资源管理框架上,这是非常好的设计,但是却带了部署测试的复杂性。为了让Spark能更方便的部署和尝试,Spark因此提供了Standalone运行模式,它由一个Spark Master和多个Spark worker组成,与Hadoop MapReduce1很相似,就连集群启动方式都几乎是一样。
◆ 以Standalone模式运行Spark集群
下载Scala2.9.3,并配置SCALA_HOME
下载Spark代码(可以使用源码编译也可以下载编译好的版本)这里下载 编译好的版本(http://spark-project.org/download/spark-0.7.3-prebuilt-cdh4.tgz)
解压spark-0.7.3-prebuilt-cdh4.tgz安装包
修改配置(conf/*) slaves: 配置工作节点的主机名 spark-env.sh:配置环境变量。
SCALA_HOME=/home/spark/scala-2.9.3 JAVA_HOME=/home/spark/jdk1.6.0_45 SPARK_MASTER_IP=spark1 SPARK_MASTER_PORT=30111 SPARK_MASTER_WEBUI_PORT=30118 SPARK_WORKER_CORES=2 SPARK_WORKER_MEMORY=4gSPARK_WORKER_PORT=30333 SPARK_WORKER_WEBUI_PORT=30119 SPARK_WORKER_INSTANCES=1
◆ 把Hadoop配置copy到conf目录下
◆ 在master主机上对其它机器做ssh无密码登录
◆ 把配置好的Spark程序使用scp copy到其它机器
◆ 在master启动集群
$SPARK_HOME/start-all.sh
yarn模式
◆ Spark-shell现在还不支持Yarn模式,使用Yarn模式运行,需要把Spark程序全部打包成一个jar包提交到Yarn上运行。目录只有branch-0.8版本才真正支持Yarn。
◆ 以Yarn模式运行Spark
下载Spark代码.
git clone git://github.com/mesos/spark
◆ 切换到branch-0.8
cd spark git checkout -b yarn --track origin/yarn
◆ 使用sbt编译Spark并
$SPARK_HOME/sbt/sbt > package > assembly
◆ 把Hadoop yarn配置copy到conf目录下
◆ 运行测试
SPARK_JAR=./core/target/scala-2.9.3/spark-core-assembly-0.8.0-SNAPSHOT.jar \ ./run spark.deploy.yarn.Client --jar examples/target/scala-2.9.3/ \ --class spark.examples.SparkPi --args yarn-standalone
使用Spark-shell
◆ Spark-shell使用很简单,当Spark以Standalon模式运行后,使用$SPARK_HOME/spark-shell进入shell即可,在Spark-shell中SparkContext已经创建好了,实例名为sc可以直接使用,还有一个需要注意的是,在Standalone模式下,Spark默认使用的调度器的FIFO调度器而不是公平调度,而Spark-shell作为一个Spark程序一直运行在Spark上,其它的Spark程序就只能排队等待,也就是说同一时间只能有一个Spark-shell在运行。
◆ 在Spark-shell上写程序非常简单,就像在Scala Shell上写程序一样。
scala> val textFile = sc.textFile("hdfs://hadoop1:2323/user/data") textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3 scala> textFile.count() // Number of items in this RDD res0: Long = 21374 scala> textFile.first() // First item in this RDD res1: String = # Spark
编写Driver程序
◆ 在Spark中Spark程序称为Driver程序,编写Driver程序很简单几乎与在Spark-shell上写程序是一样的,不同的地方就是SparkContext需要自己创建。如WorkCount程序如下:
Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。
Hadoop是对大数据集进行分布式计算的标准工具,这也是为什么当你穿过机场时能看到”大数据(Big Data)”广告的原因。它已经成为大数据的操作系统,提供了包括工具和技巧在内的丰富生态系统,允许使用相对便宜的商业硬件集群进行超级计算机级别的计算。2003和2004年,两个来自Google的观点使Hadoop成为可能:一个分布式存储框架(Google文件系统),在Hadoop中被实现为HDFS;一个分布式计算框架(MapReduce)。
这两个观点成为过去十年规模分析(scaling analytics)、大规模机器学习(machine learning),以及其他大数据应用出现的主要推动力!但是,从技术角度上讲,十年是一段非常长的时间,而且Hadoop还存在很多已知限制,尤其是MapReduce。对MapReduce编程明显是困难的。对大多数分析,你都必须用很多步骤将Map和Reduce任务串接起来。这造成类SQL的计算或机器学习需要专门的系统来进行。更糟的是,MapReduce要求每个步骤间的数据要序列化到磁盘,这意味着MapReduce作业的I/O成本很高,导致交互分析和迭代算法(iterative algorithms)开销很大;而事实是,几乎所有的最优化和机器学习都是迭代的。
为了解决这些问题,Hadoop一直在向一种更为通用的资源管理框架转变,即YARN(Yet Another Resource Negotiator, 又一个资源协调者)。YARN实现了下一代的MapReduce,但同时也允许应用利用分布式资源而不必采用MapReduce进行计算。通过将集群管理一般化,研究转到分布式计算的一般化上,来扩展了MapReduce的初衷。
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理论任务,特别是机器学习。
本文中,我们将首先讨论如何在本地机器上或者EC2的集群上设置Spark进行简单分析。然后,我们在入门级水平探索Spark,了解Spark是什么以及它如何工作(希望可以激发更多探索)。最后两节我们开始通过命令行与Spark进行交互,然后演示如何用Python写Spark应用,并作为Spark作业提交到集群上。
拓展资料
Spark官网:http://spark.apache.org/
Spark下载链接:http://spark.apache.org/downloads.html
引入 Spark
2018-02-24 15:57 更新
引入 Spark
Spark 1.2.0 使用 Scala 2.10 写应用程序,你需要使用一个兼容的 Scala 版本(例如:2.10.X)。
写 Spark 应用程序时,你需要添加 Spark 的 Maven 依赖,Spark 可以通过 Maven 中心仓库来获得:
groupId = org.apache.spark
artifactId = spark-core_2.10
version = 1.2.0
另外,如果你希望访问 HDFS 集群,你需要根据你的 HDFS 版本添加 hadoop-client 的依赖。一些公共的 HDFS 版本 tags 在第三方发行页面中被列出。
groupId = org.apache.hadoop
artifactId = hadoop-client
version = <your-hdfs-version>
最后,你需要导入一些 Spark 的类和隐式转换到你的程序,添加下面的行就可以了:
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
初始化 Spark
Spark 编程的第一步是需要创建一个 SparkContext 对象,用来告诉 Spark 如何访问集群。在创建 SparkContext 之前,你需要构建一个 SparkConf 对象, SparkConf 对象包含了一些你应用程序的信息。
val conf = new SparkConf().setAppName(appName).setMaster(master)
new SparkContext(conf)
appName 参数是你程序的名字,它会显示在 cluster UI 上。master 是 Spark, Mesos 或 YARN 集群的 URL,或运行在本地模式时,使用专用字符串 “local”。在实践中,当应用程序运行在一个集群上时,你并不想要把 master 硬编码到你的程序中,你可以用 spark-submit 启动你的应用程序的时候传递它。然而,你可以在本地测试和单元测试中使用 “local” 运行 Spark 进程。
使用 Shell
在 Spark shell 中,有一个专有的 SparkContext 已经为你创建好。在变量中叫做 sc。你自己创建的 SparkContext 将无法工作。可以用 --master 参数来设置 SparkContext 要连接的集群,用 --jars 来设置需要添加到 classpath 中的 JAR 包,如果有多个 JAR 包使用逗号分割符连接它们。例如:在一个拥有 4 核的环境上运行 bin/spark-shell,使用:
$ ./bin/spark-shell --master local[4]
或在 classpath 中添加 code.jar,使用:
$ ./bin/spark-shell --master local[4] --jars code.jar
执行 spark-shell --help 获取完整的选项列表。在这之后,调用 spark-shell 会比 spark-submit 脚本更为普遍。
共享变量
一般情况下,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本。这些变量被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序。通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变量(broadcast variable)和累加器(accumulator)
广播变量
广播变量允许程序员缓存一个只读的变量在每台机器上面,而不是每个任务保存一份拷贝。例如,利用广播变量,我们能够以一种更有效率的方式将一个大数据量输入集合的副本分配给每个节点。(Broadcast variables allow theprogrammer to keep a read-only variable cached on each machine rather than shipping a copy of it with tasks.They can be used, for example,to give every node a copy of a large input dataset in an efficient manner.)Spark也尝试着利用有效的广播算法去分配广播变量,以减少通信的成本。
一个广播变量可以通过调用SparkContext.broadcast(v)方法从一个初始变量v中创建。广播变量是v的一个包装变量,它的值可以通过value方法访问,下面的代码说明了这个过程:
scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: spark.Broadcast[Array[Int]] = spark.Broadcast(b5c40191-a864-4c7d-b9bf-d87e1a4e787c)
scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)
广播变量创建以后,我们就能够在集群的任何函数中使用它来代替变量v,这样我们就不需要再次传递变量v到每个节点上。另外,为了保证所有的节点得到广播变量具有相同的值,对象v不能在广播之后被修改。
累加器
顾名思义,累加器是一种只能通过关联操作进行“加”操作的变量,因此它能够高效的应用于并行操作中。它们能够用来实现counters和sums。Spark原生支持数值类型的累加器,开发者可以自己添加支持的类型。如果创建了一个具名的累加器,它可以在spark的UI中显示。这对于理解运行阶段(running stages)的过程有很重要的作用。(注意:这在python中还不被支持)
一个累加器可以通过调用SparkContext.accumulator(v)方法从一个初始变量v中创建。运行在集群上的任务可以通过add方法或者使用+=操作来给它加值。然而,它们无法读取这个值。只有驱动程序可以使用value方法来读取累加器的值。如下的代码,展示了如何利用累加器将一个数组里面的所有元素相加:
scala> val accum = sc.accumulator(0, "My Accumulator")
accum: spark.Accumulator[Int] = 0
scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
...
10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s
scala> accum.value
res2: Int = 10
这个例子利用了内置的整数类型累加器。开发者可以利用子类AccumulatorParam创建自己的累加器类型。AccumulatorParam接口有两个方法:zero方法为你的数据类型提供一个“0 值”(zero value);addInPlace方法计算两个值的和。例如,假设我们有一个Vector类代表数学上的向量,我们能够如下定义累加器:
object VectorAccumulatorParam extends AccumulatorParam[Vector] {
def zero(initialValue: Vector): Vector = {
Vector.zeros(initialValue.size)
}
def addInPlace(v1: Vector, v2: Vector): Vector = {
v1 += v2
}
}
// Then, create an Accumulator of this type:
val vecAccum = sc.accumulator(new Vector(...))(VectorAccumulatorParam)
在scala中,Spark支持用更一般的Accumulable接口来累积数据-结果类型和用于累加的元素类型不一样(例如通过收集的元素建立一个列表)。Spark也支持用SparkContext.accumulableCollection方法累加一般的scala集合类型。
Spark 独立应用程序
2018-11-26 16:27 更新
独立应用程序
现在假设我们想要使用 Spark API 写一个独立的应用程序。我们将通过使用 Scala(用 SBT),Java(用 Maven) 和 Python 写一个简单的应用程序来学习。
我们用 Scala 创建一个非常简单的 Spark 应用程序。如此简单,事实上它的名字叫 SimpleApp.scala:
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = "YOUR_SPARK_HOME/README.md" // 应该是你系统上的某些文件
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
这个程序仅仅是在 Spark README 中计算行里面包含 'a' 和包含 'b' 的次数。你需要注意将 YOUR_SPARK_HOME 替换成你已经安装 Spark 的路径。不像之前的 Spark Shell 例子,这里初始化了自己的 SparkContext,我们把 SparkContext 初始化作为程序的一部分。
我们通过 SparkContext 的构造函数参入 SparkConf 对象,这个对象包含了一些关于我们程序的信息。
我们的程序依赖于 Spark API,所以我们需要包含一个 sbt 文件文件,simple.sbt 解释了 Spark 是一个依赖。这个文件还要补充 Spark 依赖于一个 repository:
name := "Simple Project"
version := "1.0"
scalaVersion := "2.10.4"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.2.0"
要让 sbt 正确工作,我们需要把 SimpleApp.scala 和 simple.sbt 按照标准的文件目录结构布局。上面的做好之后,我们可以把程序的代码创建成一个 JAR 包。然后使用 spark-submit 来运行我们的程序。
# Your directory layout should look like this
$ find .
.
./simple.sbt
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala
# Package a jar containing your application
$ sbt package
...
[info] Packaging {..}/{..}/target/scala-2.10/simple-project_2.10-1.0.jar
# Use spark-submit to run your application
$ YOUR_SPARK_HOME/bin/spark-submit \
--class "SimpleApp" \
--master local[4] \
target/scala-2.10/simple-project_2.10-1.0.jar
...
Lines with a: 46, Lines with b: 23
使用 Spark Shell
基础
Spark 的 shell 作为一个强大的交互式数据分析工具,提供了一个简单的方式来学习 API。它可以使用 Scala(在 Java 虚拟机上运行现有的 Java 库的一个很好方式) 或 Python。在 Spark 目录里使用下面的方式开始运行:
./bin/spark-shell
Spark 最主要的抽象是叫Resilient Distributed Dataset(RDD) 的弹性分布式集合。RDDs 可以使用 Hadoop InputFormats(例如 HDFS 文件)创建,也可以从其他的 RDDs 转换。让我们在 Spark 源代码目录从 README 文本文件中创建一个新的 RDD。
scala> val textFile = sc.textFile("README.md")
textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3
RDD 的 actions 从 RDD 中返回值,transformations 可以转换成一个新 RDD 并返回它的引用。让我们开始使用几个操作:
scala> textFile.count() // RDD 的数据条数
res0: Long = 126
scala> textFile.first() // RDD 的第一行数据
res1: String = # Apache Spark
现在让我们使用一个 transformation,我们将使用 filter 在这个文件里返回一个包含子数据集的新 RDD。
scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))
linesWithSpark: spark.RDD[String] = spark.FilteredRDD@7dd4af09
我们可以把 actions 和 transformations 链接在一起:
scala> textFile.filter(line => line.contains("Spark")).count() // 有多少行包括 "Spark"?
res3: Long = 15
更多 RDD 操作
RDD actions 和 transformations 能被用在更多的复杂计算中。比方说,我们想要找到一行中最多的单词数量:
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)
res4: Long = 15
首先将行映射成一个整型数值产生一个新 RDD。 在这个新的 RDD 上调用 reduce 找到行中最大的个数。 map 和 reduce 的参数是 Scala 的函数串(闭包),并且可以使用任何语言特性或者 Scala/Java 类库。例如,我们可以很方便地调用其他的函数声明。 我们使用 Math.max() 函数让代码更容易理解:
scala> import java.lang.Math
import java.lang.Math
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))
res5: Int = 15
Hadoop 流行的一个通用的数据流模式是 MapReduce。Spark 能很容易地实现 MapReduce:
scala> val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
wordCounts: spark.RDD[(String, Int)] = spark.ShuffledAggregatedRDD@71f027b8
这里,我们结合 [flatMap](), [map]() 和 [reduceByKey]() 来计算文件里每个单词出现的数量,它的结果是包含一组(String, Int) 键值对的 RDD。我们可以使用 [collect] 操作在我们的 shell 中收集单词的数量:
scala> wordCounts.collect()
res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), ...)
缓存
Spark 支持把数据集拉到集群内的内存缓存中。当要重复访问时这是非常有用的,例如当我们在一个小的热(hot)数据集中查询,或者运行一个像网页搜索排序这样的重复算法。作为一个简单的例子,让我们把 linesWithSpark 数据集标记在缓存中:
scala> linesWithSpark.cache()
res7: spark.RDD[String] = spark.FilteredRDD@17e51082
scala> linesWithSpark.count()
res8: Long = 15
scala> linesWithSpark.count()
res9: Long = 15
缓存 100 行的文本文件来研究 Spark 这看起来很傻。真正让人感兴趣的部分是我们可以在非常大型的数据集中使用同样的函数,甚至在 10 个或者 100 个节点中交叉计算。你同样可以使用 bin/spark-shell 连接到一个 cluster 来替换掉编程指南中的方法进行交互操作。
Spark 运行程序
2018-11-26 16:28 更新
Spark 运行程序
祝贺你成功运行你的第一个 Spark 应用程序!
- 要深入了解 API,可以从Spark编程指南开始,或者从其他的组件开始,例如:Spark Streaming。
- 要让程序运行在集群(cluster)上,前往部署概论。
- 最后,Spark 在 examples 文件目录里包含了 Scala, Java 和 Python 的几个简单的例子,你可以直接运行它们:
# For Scala and Java, use run-example:
./bin/run-example SparkPi
# For Python examples, use spark-submit directly:
./bin/spark-submit examples/src/main/python/pi.py
Spark 并行集合
2018-11-26 16:28 更新
Spark 并行集合
并行集合 (Parallelized collections) 的创建是通过在一个已有的集合(Scala Seq)上调用 SparkContext 的 parallelize 方法实现的。集合中的元素被复制到一个可并行操作的分布式数据集中。例如,这里演示了如何在一个包含 1 到 5 的数组中创建并行集合:
val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)
一旦创建完成,这个分布式数据集(distData)就可以被并行操作。例如,我们可以调用 distData.reduce((a, b) => a + b) 将这个数组中的元素相加。我们以后再描述在分布式上的一些操作。
并行集合一个很重要的参数是切片数(slices),表示一个数据集切分的份数。Spark 会在集群上为每一个切片运行一个任务。你可以在集群上为每个 CPU 设置 2-4 个切片(slices)。正常情况下,Spark 会试着基于你的集群状况自动地设置切片的数目。然而,你也可以通过 parallelize 的第二个参数手动地设置(例如:sc.parallelize(data, 10))。
Spark 外部数据集
2018-11-26 16:29 更新
外部数据集
Spark 可以从任何一个 Hadoop 支持的存储源创建分布式数据集,包括你的本地文件系统,HDFS,Cassandra,HBase,Amazon S3等。 Spark 支持文本文件(text files),SequenceFiles 和其他 Hadoop InputFormat。
文本文件 RDDs 可以使用 SparkContext 的 textFile 方法创建。 在这个方法里传入文件的 URI (机器上的本地路径或 hdfs://,s3n:// 等),然后它会将文件读取成一个行集合。这里是一个调用例子:
scala> val distFile = sc.textFile("data.txt")
distFile: RDD[String] = MappedRDD@1d4cee08
一旦创建完成,distFiile 就能做数据集操作。例如,我们可以用下面的方式使用 map 和 reduce 操作将所有行的长度相加:distFile.map(s => s.length).reduce((a, b) => a + b)。
注意,Spark 读文件时:
- 如果使用本地文件系统路径,文件必须能在 work 节点上用相同的路径访问到。要么复制文件到所有的 workers,要么使用网络的方式共享文件系统。
- 所有 Spark 的基于文件的方法,包括 textFile,能很好地支持文件目录,压缩过的文件和通配符。例如,你可以使用 textFile("/my/文件目录"),textFile("/my/文件目录/*.txt") 和 textFile("/my/文件目录/*.gz")。
- textFile 方法也可以选择第二个可选参数来控制切片(slices)的数目。默认情况下,Spark 为每一个文件块(HDFS 默认文件块大小是 64M)创建一个切片(slice)。但是你也可以通过一个更大的值来设置一个更高的切片数目。注意,你不能设置一个小于文件块数目的切片值。
除了文本文件,Spark 的 Scala API 支持其他几种数据格式:
- SparkContext.sholeTextFiles 让你读取一个包含多个小文本文件的文件目录并且返回每一个(filename, content)对。与 textFile 的差异是:它记录的是每个文件中的每一行。
- 对于 SequenceFiles,可以使用 SparkContext 的 sequenceFile[K, V] 方法创建,K 和 V 分别对应的是 key 和 values 的类型。像 IntWritable 与 Text 一样,它们必须是 Hadoop 的 Writable 接口的子类。另外,对于几种通用的 Writables,Spark 允许你指定原声类型来替代。例如: sequenceFile[Int, String] 将会自动读取 IntWritables 和 Text。
- 对于其他的 Hadoop InputFormats,你可以使用 SparkContext.hadoopRDD 方法,它可以指定任意的 JobConf,输入格式(InputFormat),key 类型,values 类型。你可以跟设置 Hadoop job 一样的方法设置输入源。你还可以在新的 MapReduce 接口(org.apache.hadoop.mapreduce)基础上使用 SparkContext.newAPIHadoopRDD(译者注:老的接口是 SparkContext.newHadoopRDD)。
- RDD.saveAsObjectFile 和 SparkContext.objectFile 支持保存一个RDD,保存格式是一个简单的 Java 对象序列化格式。这是一种效率不高的专有格式,如 Avro,它提供了简单的方法来保存任何一个 RDD。
Spark RDD 操作
2018-11-26 16:29 更新
Spark RDD 操作
RDDs 支持 2 种类型的操作:转换(transformations) 从已经存在的数据集中创建一个新的数据集;动作(actions) 在数据集上进行计算之后返回一个值到驱动程序。例如,map 是一个转换操作,它将每一个数据集元素传递给一个函数并且返回一个新的 RDD。另一方面,reduce 是一个动作,它使用相同的函数来聚合 RDD 的所有元素,并且将最终的结果返回到驱动程序(不过也有一个并行 reduceByKey 能返回一个分布式数据集)。
在 Spark 中,所有的转换(transformations)都是惰性(lazy)的,它们不会马上计算它们的结果。相反的,它们仅仅记录转换操作是应用到哪些基础数据集(例如一个文件)上的。转换仅仅在这个时候计算:当动作(action) 需要一个结果返回给驱动程序的时候。这个设计能够让 Spark 运行得更加高效。例如,我们可以实现:通过 map 创建一个新数据集在 reduce 中使用,并且仅仅返回 reduce 的结果给 driver,而不是整个大的映射过的数据集。
默认情况下,每一个转换过的 RDD 会在每次执行动作(action)的时候重新计算一次。然而,你也可以使用 persist (或 cache)方法持久化(persist)一个 RDD 到内存中。在这个情况下,Spark 会在集群上保存相关的元素,在你下次查询的时候会变得更快。在这里也同样支持持久化 RDD 到磁盘,或在多个节点间复制。
基础
为了说明 RDD 基本知识,考虑下面的简单程序:
val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)
第一行是定义来自于外部文件的 RDD。这个数据集并没有加载到内存或做其他的操作:lines 仅仅是一个指向文件的指针。第二行是定义 lineLengths,它是 map 转换(transformation)的结果。同样,lineLengths 由于懒惰模式也没有立即计算。最后,我们执行 reduce,它是一个动作(action)。在这个地方,Spark 把计算分成多个任务(task),并且让它们运行在多个机器上。每台机器都运行自己的 map 部分和本地 reduce 部分。然后仅仅将结果返回给驱动程序。
如果我们想要再次使用 lineLengths,我们可以添加:
lineLengths.persist()
在 reduce 之前,它会导致 lineLengths 在第一次计算完成之后保存到内存中。
Spark RDD持久化
2018-11-26 16:29 更新
Spark RDD 持久化
Spark最重要的一个功能是它可以通过各种操作(operations)持久化(或者缓存)一个集合到内存中。当你持久化一个RDD的时候,每一个节点都将参与计算的所有分区数据存储到内存中,并且这些数据可以被这个集合(以及这个集合衍生的其他集合)的动作(action)重复利用。这个能力使后续的动作速度更快(通常快10倍以上)。对应迭代算法和快速的交互使用来说,缓存是一个关键的工具。
你能通过persist()或者cache()方法持久化一个rdd。首先,在action中计算得到rdd;然后,将其保存在每个节点的内存中。Spark的缓存是一个容错的技术-如果RDD的任何一个分区丢失,它可以通过原有的转换(transformations)操作自动的重复计算并且创建出这个分区。
此外,我们可以利用不同的存储级别存储每一个被持久化的RDD。例如,它允许我们持久化集合到磁盘上、将集合作为序列化的Java对象持久化到内存中、在节点间复制集合或者存储集合到Tachyon中。我们可以通过传递一个StorageLevel对象给persist()方法设置这些存储级别。cache()方法使用了默认的存储级别—StorageLevel.MEMORY_ONLY。完整的存储级别介绍如下所示:
Storage Level | Meaning |
MEMORY_ONLY | 将RDD作为非序列化的Java对象存储在jvm中。如果RDD不适合存在内存中,一些分区将不会被缓存,从而在每次需要这些分区时都需重新计算它们。这是系统默认的存储级别。 |
MEMORY_AND_DISK | 将RDD作为非序列化的Java对象存储在jvm中。如果RDD不适合存在内存中,将这些不适合存在内存中的分区存储在磁盘中,每次需要时读出它们。 |
MEMORY_ONLY_SER | 将RDD作为序列化的Java对象存储(每个分区一个byte数组)。这种方式比非序列化方式更节省空间,特别是用到快速的序列化工具时,但是会更耗费cpu资源—密集的读操作。 |
MEMORY_AND_DISK_SER | 和MEMORY_ONLY_SER类似,但不是在每次需要时重复计算这些不适合存储到内存中的分区,而是将这些分区存储到磁盘中。 |
DISK_ONLY | 仅仅将RDD分区存储到磁盘中 |
MEMORY_ONLY_2, MEMORY_AND_DISK_2, etc. | 和上面的存储级别类似,但是复制每个分区到集群的两个节点上面 |
OFF_HEAP (experimental) | 以序列化的格式存储RDD到Tachyon中。相对于MEMORY_ONLY_SER,OFF_HEAP减少了垃圾回收的花费,允许更小的执行者共享内存池。这使其在拥有大量内存的环境下或者多并发应用程序的环境中具有更强的吸引力。 |
NOTE:在python中,存储的对象都是通过Pickle库序列化了的,所以是否选择序列化等级并不重要。
Spark也会自动持久化一些shuffle操作(如reduceByKey)中的中间数据,即使用户没有调用persist方法。这样的好处是避免了在shuffle出错情况下,需要重复计算整个输入。如果用户计划重用计算过程中产生的RDD,我们仍然推荐用户调用persist方法。
如何选择存储级别
Spark的多个存储级别意味着在内存利用率和cpu利用效率间的不同权衡。我们推荐通过下面的过程选择一个合适的存储级别:
- 如果你的RDD适合默认的存储级别(MEMORY_ONLY),就选择默认的存储级别。因为这是cpu利用率最高的选项,会使RDD上的操作尽可能的快。
- 如果不适合用默认的级别,选择MEMORY_ONLY_SER。选择一个更快的序列化库提高对象的空间使用率,但是仍能够相当快的访问。
- 除非函数计算RDD的花费较大或者它们需要过滤大量的数据,不要将RDD存储到磁盘上,否则,重复计算一个分区就会和重磁盘上读取数据一样慢。
- 如果你希望更快的错误恢复,可以利用重复(replicated)存储级别。所有的存储级别都可以通过重复计算丢失的数据来支持完整的容错,但是重复的数据能够使你在RDD上继续运行任务,而不需要重复计算丢失的数据。
- 在拥有大量内存的环境中或者多应用程序的环境中,OFF_HEAP具有如下优势:
- 它运行多个执行者共享Tachyon中相同的内存池
- 它显著地减少垃圾回收的花费
- 如果单个的执行者崩溃,缓存的数据不会丢失
删除数据
Spark自动的监控每个节点缓存的使用情况,利用最近最少使用原则删除老旧的数据。如果你想手动的删除RDD,可以使用RDD.unpersist()方法
Spark Streaming关联
2018-11-26 16:29 更新
Spark Streaming关联
与Spark类似,Spark Streaming也可以利用maven仓库。编写你自己的Spark Streaming程序,你需要引入下面的依赖到你的SBT或者Maven项目中
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.2</version>
</dependency>
为了从Kafka, Flume和Kinesis这些不在Spark核心API中提供的源获取数据,我们需要添加相关的模块spark-streaming-xyz_2.10到依赖中。例如,一些通用的组件如下表所示:
Source | Artifact |
Kafka | spark-streaming-kafka_2.10 |
Flume | spark-streaming-flume_2.10 |
Kinesis | spark-streaming-kinesis-asl_2.10 |
Twitter | spark-streaming-twitter_2.10 |
ZeroMQ | spark-streaming-zeromq_2.10 |
MQTT | spark-streaming-mqtt_2.10 |
初始化StreamingContext
2018-02-24 15:57 更新
初始化StreamingContext
为了初始化Spark Streaming程序,一个StreamingContext对象必需被创建,它是Spark Streaming所有流操作的主要入口。一个StreamingContext对象可以用SparkConf对象创建。
import org.apache.spark._
import org.apache.spark.streaming._
val conf = new SparkConf().setAppName(appName).setMaster(master)
val ssc = new StreamingContext(conf, Seconds(1))
appName表示你的应用程序显示在集群UI上的名字,master是一个Spark、Mesos、YARN集群URL或者一个特殊字符串“local[*]”,它表示程序用本地模式运行。当程序运行在集群中时,你并不希望在程序中硬编码master,而是希望用spark-submit启动应用程序,并从spark-submit中得到master的值。对于本地测试或者单元测试,你可以传递“local”字符串在同一个进程内运行Spark Streaming。需要注意的是,它在内部创建了一个SparkContext对象,你可以通过ssc.sparkContext访问这个SparkContext对象。
批时间片需要根据你的程序的潜在需求以及集群的可用资源来设定,你可以在性能调优那一节获取详细的信息。
可以利用已经存在的SparkContext对象创建StreamingContext对象。
import org.apache.spark.streaming._
val sc = ... // existing SparkContext
val ssc = new StreamingContext(sc, Seconds(1))
当一个上下文(context)定义之后,你必须按照以下几步进行操作
- 定义输入源;
- 准备好流计算指令;
- 利用streamingContext.start()方法接收和处理数据;
- 处理过程将一直持续,直到streamingContext.stop()方法被调用。
几点需要注意的地方:
- 一旦一个context已经启动,就不能有新的流算子建立或者是添加到context中。
- 一旦一个context已经停止,它就不能再重新启动
- 在JVM中,同一时间只能有一个StreamingContext处于活跃状态
- 在StreamingContext上调用stop()方法,也会关闭SparkContext对象。如果只想仅关闭StreamingContext对象,设置stop()的可选参数为false
- 一个SparkContext对象可以重复利用去创建多个StreamingContext对象,前提条件是前面的StreamingContext在后面StreamingContext创建之前关闭(不关闭SparkContext)。