序列标注的定义和种类
序列标注(Sequence labeling)是NLP问题中的基本问题。在序列标注中,我们想对一个序列的每一个元素标注一个标签。一般来说,一个序列指的是一个句子,而一个元素指的是句子中的一个词。
序列标注一般可以分为两类:
原始标注(Raw labeling):每个元素都需要被标注为一个标签。
联合标注(Joint segmentation and labeling):所有的分段被标注为同样的标签。
BIO标注法和BIOES标注法NLP中的序列标注方式常用的有两种:BIO标注法和BIOES标注法。
BIO标注法:
B-begin,代表实体的开头
I-inside,代表实体的中间或结尾
O-outside,代表不属于实体
BIOES标注法:
B-begin,代表实体的开头
I-inside,代表实体的中间
O-outside,代表非实体,用于标记无关字符
E-end,代表实体的结尾
S-single,代表单个字符,本身就是一个实体
命名实体识别的背景命名实体识别(Named Entity Recognition, 简称NER)(也称为实体识别、实体分块和实体提取)是信息提取的一个子任务,旨在将文本中的命名实体定位并分类为预先定义的类别,如人员、组织、位置、时间表达式、数量、货币值、百分比等。命名实体识别是自然语言处理中的热点研究方向之一, 目的是识别文本中的命名实体并将其归纳到相应的实体类型中。
命名实体识别是NLP中一项非常基础的任务,是信息提取、问答系统、句法分析、机器翻译等众多NLP任务的重要基础工具。
从自然语言处理的流程来看,NER可以看作词法分析中未登录词识别的一种,是未登录词中数量最多、识别难度最大、对分词效果影响最大问题。同时NER也是关系抽取、事件抽取、知识图谱、机器翻译、问答系统等诸多NLP任务的基础。
命名实体识别的方法从模型的层面,可以分为基于规则的方法、无监督学习方法、有监督学习方法,从输入的层面,可以分为基于字(character-level)的方法、基于词(work-level)的方法、两者结合的方法。
基于规则的方法:依赖人工制定的规则,规则的设计一般基于句法、语法、词汇的模式,以及特定领域的知识。当词典的大小有限时,基于规则的方法可以达到很好的效果。这种方法通常具有高精确率和低召回率的特点。但是这种方法无法难以迁移到别的领域,对于新的领域需要重新制定规则。
无监督学习方法:利用语义相似性进行聚类,从聚类得到的组当中抽取命名实体,通过统计数据推断实体类别。
基于特征的监督学习方法:可以表示为多分类任务或者序列标注任务,从数据中学习。
图1 NER识别算法发展历程
下面介绍几种常见的命名实体识别算法:
BiLSTM-CRF算法
图2 BiLSTM-CRF结构图
论文名称:Neural Architectures for Named Entity Recognition
论文链接:https://arxiv.org/pdf/1603.01360.pdf
应用于NER中的BiLSTM-CRF模型主要由Embedding层(主要有词向量,字向量以及一些额外特征),双向LSTM层,以及最后的CRF层构成。实验结果表明BiLSTM-CRF已经达到或者超过了基于丰富特征的CRF模型,成为目前基于深度学习的NER方法中的最主流模型。在特征方面,该模型继承了深度学习方法的优势,无需特征工程,使用词向量以及字符向量就可以达到很好的效果,如果有高质量的词典特征,能够进一步获得提高。
如果读者想要更进一步了解BiLSTM-CRF算法,可以转到之前笔者写的《深入浅出讲解BiLSTM-CRF》文章进一步阅读。
IDCNN-CRF
论文名称:Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
论文链接:https://arxiv.org/abs/1702.02098
论文提出在NER任务中,引入膨胀卷积,一方面可以引入CNN并行计算的优势,提高训练和预测时的速度;另一方面,可以减轻CNN在长序列输入上特征提取能力弱的劣势。具体使用时,dilated width会随着层数的增加而指数增加。这样随着层数的增加,参数数量是线性增加的,而感受野却是指数增加的,这样就可以很快覆盖到全部的输入数据。IDCNN对输入句子的每一个字生成一个logits,这里就和BiLSTM模型输出logits之后完全一样,再放入CRF Layer解码出标注结果。