题解:LCA+线段树
#include <bits/stdc++.h>
#define ll long long
using namespace std;
namespace _{
char buf[100000], *p1 = buf, *p2 = buf; bool rEOF = 1;//为0表示文件结尾
inline char nc(){ return p1 == p2 && rEOF && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? (rEOF = 0, EOF) : *p1++; }
template<class _T>
inline void read(_T &num){
char c = nc(), f = 1; num = 0;
while (c<'0' || c>'9')c == '-' && (f = -1), c = nc();
while (c >= '0'&&c <= '9')num = num * 10 + c - '0', c = nc();
num *= f;
}
inline bool need(char &c){ return c >= 'a'&&c <= 'z' || c >= '0'&&c <= '9' || c >= 'A'&&c <= 'Z'; }//读入的字符范围
inline void read_str(char *a){
while ((*a = nc()) && !need(*a) && rEOF); ++a;
while ((*a = nc()) && need(*a) && rEOF)++a; --p1, *a = '\0';
}
template<class _T>
inline void println(_T x){
static int buf[30], len; len = 0; do buf[len++] = x % 10, x /= 10; while (x);
while (len) putchar(buf[--len] + 48);
putchar('\n');
}
}using namespace _;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e9+7;
const int MAXN = 500005;
int n, q, k;
int a[MAXN];
struct edge{
int v,next;
}e[MAXN<<1];
int head[MAXN], cnt;
inline void add(int u,int v){
e[cnt] = (edge){v,head[u]}, head[u] = cnt++;
}
int dep[MAXN], low[MAXN], dfn[MAXN], tot, fa[MAXN][20];
void dfs(int u,int f){
dep[u] = dep[f] + 1, dfn[u] = ++tot, fa[u][0] = f;
for(int i = 1;i<20;i++)fa[u][i] = fa[fa[u][i-1]][i-1];
for(int i = head[u];~i;i = e[i].next){
if(e[i].v == f)continue;
dfs(e[i].v, u);
}
low[u] = tot;
}
inline int lca(int u,int v){
if(dep[u]<dep[v])swap(u,v);
for(int i = 0, del = dep[u]-dep[v];del;i++, del>>=1)
if(del&1)u = fa[u][i];
if(u == v)return u;
for(int i = 19;i>=0;i--)
if(fa[u][i]!=fa[v][i])u = fa[u][i], v = fa[v][i];
return fa[u][0];
}
#define mid ((l+r)>>1)
struct Tree{
int lazy, sum;
}T[MAXN<<2];
inline void pushdown(int u,int l,int r){
if(~T[u].lazy){
T[u<<1].lazy = T[u<<1|1].lazy = T[u].lazy;
T[u<<1].sum = T[u].lazy*(mid-l+1);
T[u<<1|1].sum = T[u].lazy*(r-mid);
T[u].lazy = -1;
}
}
void update(int u,int l,int r,int L,int R,int x){
if(L<=l&&r<=R){
T[u].lazy = x;
T[u].sum = x*(r-l+1);
return;
}
pushdown(u,l,r);
if(L<=mid)update(u<<1,l,mid,L,R,x);
if(R>mid)update(u<<1|1,mid+1,r,L,R,x);
T[u].sum = T[u<<1].sum + T[u<<1|1].sum;
}
int main() {
memset(head,-1,sizeof head);
read(n), read(q);
for(int i = 1,u,v;i<n;i++){
read(u), read(v), add(u,v), add(v,u);
}
dfs(1,1);
while(q--){
read(k); for(int i = 1;i<=k;i++) read(a[i]);
if(k == 1){
println(n); continue;
}
T[1].lazy = 0;
int rt = a[1];
for(int i = 2;i<=k;i++){
if(dfn[rt] <= dfn[a[i]] && dfn[a[i]] <= low[rt]){ //情况1,在rt的子树中
int d = ((dep[a[i]] + dep[rt])>>1) + 1, u = a[i];
for(int j = 19;j>=0;j--)
if(dep[fa[u][j]] >= d) u = fa[u][j];
update(1,1,n,dfn[u],low[u],1); //对u整个子树打标记
}else{
int lc = lca(rt, a[i]);
int dis = ((dep[a[i]] + dep[rt] - (dep[lc]<<1))>>1)+1;
if(dep[a[i]] >= dep[rt]){ //情况2
int d = dis - dep[rt] + (dep[lc]<<1), u = a[i];
for(int j = 19;j>=0;j--)
if(dep[fa[u][j]] >= d) u = fa[u][j];
update(1,1,n,dfn[u],low[u],1); //对u整个子树打标记
}else{ //情况3
int d = dep[rt] - dis + 1, u = rt; //d表示u的深度
for(int j = 19;j>=0;j--)
if(dep[fa[u][j]] >= d) u = fa[u][j];
if(1 <= dfn[u]-1)update(1,1,n,1,dfn[u]-1,1); //对u子树外的点打标记
if(low[u]+1 <= n)update(1,1,n,low[u]+1,n,1); //对u子树外的点打标记
}
}
}
println(n-T[1].sum); //答案为总点数-被标记点数
}
return 0;
}