AKKA简介



什么是AKKA

Akka是一个由Scala编写的,能兼容SacalaJAVA的,用于编写高可用和高伸缩性的Actor模型框架.它基于了事件驱动的并发处理模式,性能非常的高,并且有很高的可用性.大大的简化了我们在应用系统中开发并发处理的过程.它在各个领域都有很好的表现.



使用AKKA的好处

就如上面简介中所说的,AKKA把并发操作的各种复杂的东西都统一的做了封装.我们主要关心的是业务逻辑的实现,只需要少量的关心Actor模型的串联即可构建出高可用,高性能,高扩展的应用.



Akka for JAVA

由于AKKA是使用Scala编写的,而Scala是一种基于JVM的语言.因此JAVA对AKKA的支持也是很不错的.Akka自身又是采用微内核的方式来实现的,这就意味着能很容易的在自己的项目中应用AKKA,只需要引入几个akka的Lib包即可.而官方直接就提供了Maven库供我们在JAVA中使用AKKA.
这些AKKA的依赖包主要有:

  • akka-actor:最核心的依赖包,里面实现了Actor模型的大部分东西
  • akka-agent:代理/整合了Scala中的一些STM特性
  • akka-camel:整合了Apache的Camel
  • akka-cluster:akka集群依赖,封装了集群成员的管理和路由
  • akka-kernel:akka的一个极简化的应用服务器,可以脱离项目单独运行.
  • akka-osgi:对OSGI容器的支持,有akka的最基本的Bundle
  • akka-remote:akka远程调用
  • akka-slf4j:Akka的日志事件监听
  • akka-testkit:Akka的各种测试工具
  • akka-zeromq:整合ZeroMQ
    其中最总要的就是akka-actor,最简单的AKKA使用的话,只需要引入这个包就可以了.


Actor模型



什么是Actor

既然说AKKA是一个Actor模型框架,那么就需要搞清楚什么是Actor模型.Actor模型是由Carl Hewitt于上世纪70年代提出的,目的是为了解决分布式编程中的一系列问题而产生.
Actor模型中,一切都可以抽象为Actor.
而Actor是封装了状态和行为的对象,他们的唯一通讯方式就是交换消息,交换的消息放在接收方的邮箱(Inbox)里.也就是说Actor之间并不直接通信,而是通过了消息来相互沟通,每一个Actor都把它要做的事情都封装在了它的内部.
每一个Actor是可以有状态也可以是无状态的,理论上来讲,每一个Actor都拥有属于自己的轻量级线程,保护它不会被系统中的其他部分影响.因此,我们在编写Actor时,就不用担心并发的问题.
通过Actor能够简化锁以及线程管理,Actor具有以下的特性:

  • 提供了一种高级的抽象,能够封装状态和操作.简化并发应用的开发.
  • 提供了异步的非阻塞的/高性能的事件驱动模型
  • 超级轻量级的线程事件处理能力.

要在JAVA中实现一个Actor也非常的简单,直接继承akka.actor.UntypedActor类,然后实现public void onReceive(Object message) throws Exception方法即可.



Actor系统

光有一个一个独立的Actor显然是不行的.Akka中还有一个Actor System.
Actor System统管了Actor,是Actor的系统工厂或管理者,掌控了Actor的生命周期.

如上图所示,我们可以通过ActorSystem.create来创建一个ActorSystem的实例.然后通过actorOf等方法来获取ActorRef对象.ActorRef即为Actor Reference.它是Actor的一个引用,主要的作用是发送消息给它表示的Actor.而Actor可以通过访问self()sender()方法来获取到自身或消息发送者的Actor引用.通过引用发送消息.在Akka中,Actor之间永远都不能直接的通信,必须通过他们的代理ActorRef建立通信.



Actor路径

为了实现一切事物都是Actor,为了能把一个复杂的事物划分的更细致.Akka引入了父子Actor.也就是Actor是有树形结构的关系的.这样的父子结构就能递归的把任何复杂的事物原子化.这也是Actor模型的精髓所在.这样做不仅使任务本身被清晰地划分出结构,而且最终的Actor也能按照他们明确的消息类型以及处理流程来进行解析.这样的递归结构使得消息能够在正确的层次进行处理.

为了能管理父子结构的Actor,Akka又引入了Actor Path,也就是Actor路径.
Actor路径使用类似于URL的方式来描述一个Actor,Actor Path在一个Actor System中是唯一的.通过路径,可以很明确的看出某个Actor的父级关系是怎样的.

12345678

//本地Actor"akka://my-sys/user/service-a/worker1"//远程Actor"akka.tcp://my-sys@host.example.com:2552/user/service-b"//集群Actor服务"cluster://my-cluster/service-c"

以上三种就是Akka中支持的Actor路径. 每一个通过ActorSystem创建出来的Actor都会有一个这样的路径.也可以通过这个路径从ActorSystem中获取一个Actor.

当我们创建一个ActorSystem的时候,AKKA会为该System默认的创建三个Actor,并处于不同的层次:

其中的root guardian是所有Actor的父.
UserActor是所有用户创建的Actor的父.它的路径是/user,通过system.actorOf()创建出来的Actor都算是用户的Actor,也都是这个Actor的子.
SystemActor是所有系统创建的Actor的父.它的路径是/system,主要的作用是提供了一系列的系统的功能.

当我们查找一个Actor的时候,可以使用ActorSystem.actorSelection()方法.并且可以使用绝对路径或者相对路径来获取.如果是相对路径,那么..表示的是父Actor.比如:

123

ActorSelection selection = system.actorSelection("../brother");ActorRef actor = selection.anchor();selection.tell(xxx);

同时,也可以通过通配符来查询逻辑的Actor层级,比如:

12

ActorSelection selection = system.actorSelection("../*");selection.tell(xxx);

这个就表示把消息发送给当前Actor之外的所有同级的Actor.



Hello AKKA Demo

原理讲了这么多,那么我们就来看一看一个最简单的Akka的例子吧.
这个是一个最简单的打招呼的例子,这个例子中,定义了招呼,打招呼的人两个对象或者说消息.然后定义了执行打招呼和打印招呼两个Actor.然后通过ActorSystem整合整个打招呼的过程.

Greet.java

12345678

/** * 用于表示执行打招呼这个操作的消息 * @author SUN * @version 1.0 * @Date 16/1/6 21:43 */public class Greet implements Serializable {}

Greeting.java

123456789101112

/** * 招呼体,里面有打的什么招呼 * @author SUN * @version 1.0 * @Date 16/1/6 21:44 */public class Greeting implements Serializable { public final String message; public Greeting(String message) { this.message = message; }}

WhoToGreet.java

123456789101112

/** * 打招呼的人 * @author SUN * @version 1.0 * @Date 16/1/6 21:41 */public class WhoToGreet implements Serializable { public final String who; public WhoToGreet(String who) { this.who = who; }}

Greeter.java

123456789101112131415161718192021

/** * 打招呼的Actor * @author SUN * @version 1.0 * @Date 16/1/6 21:40 */public class Greeter extends UntypedActor{ String greeting = ""; @Override public void onReceive(Object message) throws Exception { if (message instanceof WhoToGreet) greeting = "hello, " + ((WhoToGreet) message).who; else if (message instanceof Greet) // 发送招呼消息给发送消息给这个Actor的Actor getSender().tell(new Greeting(greeting), getSelf()); else unhandled(message); }}

GreetPrinter.java

1234567891011121314

/** * 打印招呼 * @author SUN * @version 1.0 * @Date 16/1/6 21:45 */public class GreetPrinter extends UntypedActor{ @Override public void onReceive(Object message) throws Exception { if (message instanceof Greeting) System.out.println(((Greeting) message).message); }}

DemoMain.java

12345678910111213141516171819202122232425262728293031323334353637383940414243

/** * @author SUN * @version 1.0 * @Date 16/1/6 21:39 */public class DemoMain { public static void main(String[] args) throws Exception { final ActorSystem system = ActorSystem.create("helloakka"); // 创建一个到greeter Actor的管道 final ActorRef greeter = system.actorOf(Props.create(Greeter.class), "greeter"); // 创建邮箱 final Inbox inbox = Inbox.create(system); // 先发第一个消息,消息类型为WhoToGreet greeter.tell(new WhoToGreet("akka"), ActorRef.noSender()); // 真正的发送消息,消息体为Greet inbox.send(greeter, new Greet()); // 等待5秒尝试接收Greeter返回的消息 Greeting greeting1 = (Greeting) inbox.receive(Duration.create(5, TimeUnit.SECONDS)); System.out.println("Greeting: " + greeting1.message); // 发送第三个消息,修改名字 greeter.tell(new WhoToGreet("typesafe"), ActorRef.noSender()); // 发送第四个消息 inbox.send(greeter, new Greet()); // 等待5秒尝试接收Greeter返回的消息 Greeting greeting2 = (Greeting) inbox.receive(Duration.create(5, TimeUnit.SECONDS)); System.out.println("Greeting: " + greeting2.message); // 新创建一个Actor的管道 ActorRef greetPrinter = system.actorOf(Props.create(GreetPrinter.class)); //使用schedule 每一秒发送一个Greet消息给 greeterActor,然后把greeterActor的消息返回给greetPrinterActor system.scheduler().schedule(Duration.Zero(), Duration.create(1, TimeUnit.SECONDS), greeter, new Greet(), system.dispatcher(), greetPrinter); //system.shutdown(); }}

以上就是整个Demo的所有代码,并不多.接下来我们就分析一下这个程序.

首先是定义的几个消息.在Akka中传递的消息必须实现Serializable接口.WhoToGreet消息表示了打招呼的人,Greeting表示了招呼的内容,而Greet表示了打招呼这个动作.

接着就是两个最重要的Actor了.GreetPrinter非常简单,接收到消息后,判断消息的类型,如果是Greeting招呼内容,那么就直接打印消息到控制台.而Greeter这个Actor稍微复杂点,它消费两种不同的消息,如果是WhoToGreet,那么就把要打招呼的人记录到自己的上下文中,如果是Greet,那么就构造出招呼的内容,并把消息反馈回sender.

最后,再来分析下DemoMain.

  1. 一来,先创建了一个ActorSystem,
  2. 然后创建了一个GreeterActor的实例,命名为greeter.
  3. 接着,为这个Actor,显示的创建了一个邮箱.
  4. 而后,调用greeter.tell(new WhoToGreet("akka"), ActorRef.noSender());,表示给greeter这个Actor发送一个消息,消息的内容是WhoToGreet,发送者是空.这就意味着在greeter这个Actor内部,调用sender是不能获取到发送者的.通过这个动作,就把消息限定为了单向的.
  5. 再然后,通过inbox.send(greeter, new Greet());,使用邮箱显示的发送一个Greet消息给greeter.这是给Actor发送消息的另外一种方法,这种方法通常会有更高的自主性,能完成更多更复杂的操作.但是调用起来比直接使用ActorRef来的复杂.
  6. Greeting greeting1 = (Greeting) inbox.receive(Duration.create(5, TimeUnit.SECONDS));表示的就是尝试在5秒钟内,从Inbox邮箱中获取到反馈消息.如果5秒内没有获取到,那么就抛出TimeoutException异常. 由于我们在greeter这个Actor中有处理,接收到Greet消息后,就构造一个Greeting消息给sender,因此这个地方是能够正确的获取到消息的反馈的.
  7. 后面的操作都是一样的,就不再重复描述.
  8. 只有最后一个代码稍微有点不一样system.scheduler().schedule(Duration.Zero(), Duration.create(1, TimeUnit.SECONDS), greeter, new Greet(), system.dispatcher(), greetPrinter);,这个使用了ActorSystem中的调度功能.每一秒钟给greeter这个Actor发送一个Greet消息,并指定消息的发送者是greetPrinter.这样每隔一秒钟,greeter就会收到Greet消息,然后构造成Greeting消息,又返回给GreetPrinter这个Actor,这个Actor接收到消息后,打印出来.形成一个环流.