把redis作为缓存使用已经是司空见惯,但是使用redis后也可能会碰到一系列的问题,尤其是数据量很大的时候,经典的几个问题如下:

(一)缓存和数据库间数据一致性问题

分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存。我们只能采取合适的策略来降低缓存和数据库间数据不一致的概率,而无法保证两者间的强一致性。合适的策略包括 合适的缓存更新策略,更新数据库后要及时更新缓存、缓存失败时增加重试机制,例如MQ模式的消息队列。

(二)缓存击穿问题

缓存击穿表示恶意用户模拟请求很多缓存中不存在的数据,由于缓存中都没有,导致这些请求短时间内直接落在了数据库上,导致数据库异常。这个我们在实际项目就遇到了,有些抢购活动、秒杀活动的接口API被大量的恶意用户刷,导致短时间内数据库宕机了,好在数据库是多主多从的,hold住了。

解决方案的话:

1、使用互斥锁排队

业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁,单机的话用普通的锁(synchronized、Lock)就够了。

public String getWithLock(String key, Jedis jedis, String lockKey, String uniqueId, long expireTime) {
 // 通过key获取value
 String value = redisService.get(key);
 if (StringUtil.isEmpty(value)) {
 // 分布式锁,
 //封装的tryDistributedLock包括setnx和expire两个功能,在低版本的redis中不支持
 try {
 boolean locked = redisService.tryDistributedLock(jedis, lockKey, uniqueId, expireTime);
 if (locked) {
 value = userService.getById(key);
 redisService.set(key, value);
 redisService.del(lockKey);
 return value;
 } else {
 // 其它线程进来了没获取到锁便等待50ms后重试
 Thread.sleep(50);
 getWithLock(key, jedis, lockKey, uniqueId, expireTime);
 }
 } catch (Exception e) {
 log.error("getWithLock exception=" + e);
 return value;
 } finally {
 redisService.releaseDistributedLock(jedis, lockKey, uniqueId);
 }
 }
 return value;
}

这样做思路比较清晰,也从一定程度上减轻数据库压力,但是锁机制使得逻辑的复杂度增加,吞吐量也降低了,有点治标不治本。

2、布隆过滤器(推荐)

bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小,下面先来简单的实现下看看效果,我这里用guava实现的布隆过滤器:

public class BloomFilterMain {

    private static final int capacity = 1000000;
    private static final int key = 999998;

    private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity);

    static {
        for (int i = 0; i < capacity; i++) {
            bloomFilter.put(i);
        }
    }

    public static void main(String[] args) {
        //返回计算机最精确的时间,单位微妙
        long start = System.nanoTime();

        if (bloomFilter.mightContain(key)) {
            System.out.println("成功过滤到" + key);
        }
        long end = System.nanoTime();
        System.out.println("布隆过滤器消耗时间:" + (end - start)); //176456
        int sum = 0;
        for (int i = capacity + 20000; i < capacity + 30000; i++) {
            if (bloomFilter.mightContain(i)) {
                sum = sum + 1;
            }
        }
        System.out.println("错判率为:" + sum);
    }
}
jar
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
	<version>26.0-jre</version>
</dependency>

成功过滤到999998
布隆过滤器消耗时间:215518
错判率为:318
复制代码

可以看到,100w个数据中只消耗了约0.2毫秒就匹配到了key,速度足够快。然后模拟了1w个不存在于布隆过滤器中的key,匹配错误率为318/10000,也就是说,出错率大概为3%,跟踪下BloomFilter的源码发现默认的容错率就是0.03:

public static <T> BloomFilter<T> create(Funnel<? super T> funnel, int 
    expectedInsertions) {
    return create(funnel, (long) expectedInsertions);
  }

  public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long 
    expectedInsertions) {
    return create(funnel, expectedInsertions, 0.03); 
      // FYI, for 3%, we always get 5 hash functions
  }

我们可调用BloomFilter的这个方法显式的指定误判率:

 

private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity,0.01);


public static <T> BloomFilter<T> create(
      Funnel<? super T> funnel, int expectedInsertions, double fpp) {
    return create(funnel, (long) expectedInsertions, fpp);
  }

我们断点跟踪下,误判率为0.02和默认的0.03时候的区别:

 

exp: 错误率0.03(默认)

RedisTemplate 并发问题 redis解决并发问题_redis

 

exp: 错误率0.02

RedisTemplate 并发问题 redis解决并发问题_RedisTemplate 并发问题_02

exp: 错误率0.01

RedisTemplate 并发问题 redis解决并发问题_RedisTemplate 并发问题_03

对比两个出错率可以发现,误判率为0.02时数组大小为8142363,0.03时为7298440,误判率降低了0.01,BloomFilter维护的数组大小也减少了843923,可见BloomFilter默认的误判率0.03是设计者权衡系统性能后得出的值。要注意的是,布隆过滤器不支持删除操作。用在这边解决缓存穿透问题就是:

public String getByKey(String key) {
 // 通过key获取value
 String value = redisService.get(key);
 if (StringUtil.isEmpty(value)) {
 if (bloomFilter.mightContain(key)) {
 value = userService.getById(key);
 redisService.set(key, value);
 return value;
 } else {
 return null;
 }
 }
 return value;
}

(三)缓存雪崩问题

缓存在同一时间内大量键过期(失效),接着来的一大波请求瞬间都落在了数据库中导致连接异常。

解决方案:

1、也是像解决缓存穿透一样加锁排队,实现同上;

2、建立备份缓存,缓存A和缓存B,A设置超时时间,B不设值超时时间,先从A读缓存,A没有读B,并且更新A缓存和B缓存;

public String getByKey(String keyA,String keyB) {
 String value = redisService.get(keyA);
 if (StringUtil.isEmpty(value)) {
 value = redisService.get(keyB);
 String newValue = getFromDbById();
 redisService.set(keyA,newValue,31, TimeUnit.DAYS);
 redisService.set(keyB,newValue);
 }
 return value;
}

(四)缓存并发问题

Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。

这里的并发指的是多个redis的client同时set key引起的并发问题。比较有效的解决方案就是把redis.set操作放在队列中使其串行化,必须的一个一个执行。对此有2种解决方法:  

1.客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized。     

2.服务器角度,利用setnx实现锁。

注:redis集群,redis主重复制,大家各自根据业务自己选择。

 

redis中的事务再续!!!!!!!