1.Master和Worker

Spark特有资源调度系统的Leader。掌管着整个集群的资源信息,类似于Yarn框架中的ResourceManager,主要功能:
(1)监听Worker,看Worker是否正常工作;
(2)Master对Worker、Application等的管理(接收worker的注册并管理所有的worker,接收client提交的application,(FIFO)调度等待的application并向worker提交)。
2)Worker
Spark特有资源调度系统的Slave,有多个。每个Slave掌管着所在节点的资源信息,类似于Yarn框架中的NodeManager,主要功能:
(1)通过RegisterWorker注册到Master;
(2)定时发送心跳给Master;
(3)根据master发送的application配置进程环境,并启动StandaloneExecutorBackend(执行Task所需的临时进程)

2.Driver和Executor

1)Driver(驱动器)
Spark的驱动器是执行开发程序中的main方法的进程。它负责开发人员编写的用来创建SparkContext、创建RDD,以及进行RDD的转化操作和行动操作代码的执行。如果你是用spark shell,那么当你启动Spark shell的时候,系统后台自启了一个Spark驱动器程序,就是在Spark shell中预加载的一个叫作 sc的SparkContext对象。如果驱动器程序终止,那么Spark应用也就结束了。主要负责:
(1)把用户程序转为任务
(2)跟踪Executor的运行状况
(3)为执行器节点调度任务
(4)UI展示应用运行状况
2)Executor(执行器)
Spark Executor是一个工作进程,负责在 Spark 作业中运行任务,任务间相互独立。Spark 应用启动时,Executor节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor节点上继续运行。主要负责:
(1)负责运行组成 Spark 应用的任务,并将状态信息返回给驱动器进程;
(2)通过自身的块管理器(Block Manager)为用户程序中要求缓存的RDD提供内存式存储。RDD是直接缓存在Executor进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

因此,Master和Worker是Spark的守护进程,即Spark在特定模式下正常运行所必须的进程。Driver和Executor是临时进程,当有具体任务提交到Spark集群才会开启的进程。