Dubbo3中的并发控制

XML方式配置

限制类的线程隔离控制(服务端)

限制com.xxx.ApiService的每个方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

<dubbo:service interface="com.xxx.ApiService" executes="10" />

Annotation方式配置

限制类的线程隔离控制(服务端)

限制com.xxx.ApiService的每个方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

@DubboService(version = "1.0.0",executes=10)
public class DefaultRpcOrderProcessApi implements RpcOrderProcessApi {}
限制方法的线程隔离控制(服务端)

限制com.xxx.ApiService的sayHello 方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

<dubbo:service interface="com.xxx.ApiService">
    <dubbo:method name="sayHello" executes="10" />
</dubbo:service>

Annotation方式配置

限制方法的线程隔离控制(服务端)

限制com.xxx.ApiService的sayHello 方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

@DubboService(version = "1.0.0",
        methods = {
        @Method(name = "sayHello", executes= 10, retries = 0))
public class DefaultRpcOrderProcessApi implements RpcOrderProcessApi {}

XML方式配置

限制类的线程隔离控制(消费端)

限制 com.xxx.ApiService的每个方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:

<dubbo:reference interface="com.xxx.ApiService" actives="10" />

Annotation方式配置

限制类的线程隔离控制(消费端)

限制 com.xxx.ApiService的每个方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:

@DubboReference(version = "1.0.0",actives = 10)
RpcShopCarProcessApi rpcShopCarProcessApi;

XML方式配置

限制方法的线程隔离控制(消费端)

限制 com.xxx.ApiService 的 sayHello 方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:

<dubbo:reference interface="com.xxx.ApiService">
    <dubbo:method name="sayHello" actives="10" />
</dubbo:service>

Annotation方式配置

限制方法的线程隔离控制(消费端)

限制 com.xxx.ApiService 的 sayHello 方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:

@DubboReference(version = "1.0.0",methods = {@Method(name = "sayHello", actives= 10, retries = 0)})
    RpcShopCarProcessApi rpcShopCarProcessApi;```

集群负载均衡

在集群负载均衡时,Dubbo 提供了多种均衡策略,缺省为 random 随机调用。配置服务的客户端的 loadbalance 属性为leastactive,此 Loadbalance 会调用并发数最小的 Provider(Consumer端并发数)。

负载均衡策略

目前 Dubbo 内置了如下负载均衡算法,用户可直接配置使用:

算法

特性

备注

RandomLoadBalance

加权随机

默认算法,默认权重相同

RoundRobinLoadBalance

加权轮询

借鉴于 Nginx 的平滑加权轮询算法,默认权重相同

LeastActiveLoadBalance

最少活跃优先 + 加权随机

背后是能者多劳的思想

ShortestResponseLoadBalance

最短响应优先 + 加权随机

更加关注响应速度

ConsistentHashLoadBalance

一致性 Hash

确定的入参,确定的提供者,适用于有状态请求

LoadbalanceRules的选择类型
public interface LoadbalanceRules {

    /**
     *  This class select one provider from multiple providers randomly.
     **/
    String RANDOM = "random";

    /**
     *  Round robin load balance.
     **/
    String ROUND_ROBIN = "roundrobin";

    /**
     *  Filter the number of invokers with the least number of active calls and count the weights and quantities of these invokers.
     **/
    String LEAST_ACTIVE = "leastactive";

    /**
     *  Consistent Hash, requests with the same parameters are always sent to the same provider.
     **/
    String CONSISTENT_HASH = "consistenthash";

    /**
     *  Filter the number of invokers with the shortest response time of success calls and count the weights and quantities of these invokers.
     **/
    String SHORTEST_RESPONSE = "shortestresponse";

    String EMPTY = "";

}
Random

加权随机,按权重设置随机概率。在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

  • 缺点:存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。
实现的源码如下:
public class RandomLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "random";

    /**
     * Select one invoker between a list using a random criteria
     * @param invokers List of possible invokers
     * @param url URL
     * @param invocation Invocation
     * @param <T>
     * @return The selected invoker
     */
    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        // Number of invokers
        int length = invokers.size();

        if (!needWeightLoadBalance(invokers,invocation)){
            return invokers.get(ThreadLocalRandom.current().nextInt(length));
        }

        // Every invoker has the same weight?
        boolean sameWeight = true;
        // the maxWeight of every invokers, the minWeight = 0 or the maxWeight of the last invoker
        int[] weights = new int[length];
        // The sum of weights
        int totalWeight = 0;
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            // Sum
            totalWeight += weight;
            // save for later use
            weights[i] = totalWeight;
            if (sameWeight && totalWeight != weight * (i + 1)) {
                sameWeight = false;
            }
        }
        if (totalWeight > 0 && !sameWeight) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offset = ThreadLocalRandom.current().nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < length; i++) {
                if (offset < weights[i]) {
                    return invokers.get(i);
                }
            }
        }
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(ThreadLocalRandom.current().nextInt(length));
    }

    private <T> boolean needWeightLoadBalance(List<Invoker<T>> invokers, Invocation invocation) {

        Invoker invoker = invokers.get(0);
        URL invokerUrl = invoker.getUrl();
        // Multiple registry scenario, load balance among multiple registries.
        if (REGISTRY_SERVICE_REFERENCE_PATH.equals(invokerUrl.getServiceInterface())) {
            String weight = invokerUrl.getParameter(REGISTRY_KEY + "." + WEIGHT_KEY);
            if (StringUtils.isNotEmpty(weight)) {
                return true;
            }
        } else {
            String weight = invokerUrl.getMethodParameter(invocation.getMethodName(), WEIGHT_KEY);
            if (StringUtils.isNotEmpty(weight)) {
                return true;
            }else {
                String timeStamp = invoker.getUrl().getParameter(TIMESTAMP_KEY);
                if (StringUtils.isNotEmpty(timeStamp)) {
                    return true;
                }
            }
        }
        return false;
    }
}

当我们使用它的时候,只需要进行选择loadBalance值作为“random”( public static final String NAME = “random”;)

RoundRobin

加权轮询,按公约后的权重设置轮询比率,循环调用节点

  • 缺点:同样存在慢的提供者累积请求的问题。
源码如下:
public class RoundRobinLoadBalance extends AbstractLoadBalance {
    public static final String NAME = "roundrobin";

    private static final int RECYCLE_PERIOD = 60000;

    protected static class WeightedRoundRobin {
        private int weight;
        private AtomicLong current = new AtomicLong(0);
        private long lastUpdate;

        public int getWeight() {
            return weight;
        }

        public void setWeight(int weight) {
            this.weight = weight;
            current.set(0);
        }

        public long increaseCurrent() {
            return current.addAndGet(weight);
        }

        public void sel(int total) {
            current.addAndGet(-1 * total);
        }

        public long getLastUpdate() {
            return lastUpdate;
        }

        public void setLastUpdate(long lastUpdate) {
            this.lastUpdate = lastUpdate;
        }
    }

    private ConcurrentMap<String, ConcurrentMap<String, WeightedRoundRobin>> methodWeightMap = new ConcurrentHashMap<String, ConcurrentMap<String, WeightedRoundRobin>>();

    /**
     * get invoker addr list cached for specified invocation
     * <p>
     * <b>for unit test only</b>
     *
     * @param invokers
     * @param invocation
     * @return
     */
    protected <T> Collection<String> getInvokerAddrList(List<Invoker<T>> invokers, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        Map<String, WeightedRoundRobin> map = methodWeightMap.get(key);
        if (map != null) {
            return map.keySet();
        }
        return null;
    }

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        ConcurrentMap<String, WeightedRoundRobin> map = methodWeightMap.computeIfAbsent(key, k -> new ConcurrentHashMap<>());
        int totalWeight = 0;
        long maxCurrent = Long.MIN_VALUE;
        long now = System.currentTimeMillis();
        Invoker<T> selectedInvoker = null;
        WeightedRoundRobin selectedWRR = null;
        for (Invoker<T> invoker : invokers) {
            String identifyString = invoker.getUrl().toIdentityString();
            int weight = getWeight(invoker, invocation);
            WeightedRoundRobin weightedRoundRobin = map.computeIfAbsent(identifyString, k -> {
                WeightedRoundRobin wrr = new WeightedRoundRobin();
                wrr.setWeight(weight);
                return wrr;
            });

            if (weight != weightedRoundRobin.getWeight()) {
                //weight changed
                weightedRoundRobin.setWeight(weight);
            }
            long cur = weightedRoundRobin.increaseCurrent();
            weightedRoundRobin.setLastUpdate(now);
            if (cur > maxCurrent) {
                maxCurrent = cur;
                selectedInvoker = invoker;
                selectedWRR = weightedRoundRobin;
            }
            totalWeight += weight;
        }
        if (invokers.size() != map.size()) {
            map.entrySet().removeIf(item -> now - item.getValue().getLastUpdate() > RECYCLE_PERIOD);
        }
        if (selectedInvoker != null) {
            selectedWRR.sel(totalWeight);
            return selectedInvoker;
        }
        // should not happen here
        return invokers.get(0);
    }

得出结论可以使用roundrobin进行指定(public static final String NAME = "roundrobin)

LeastActive

加权最少活跃调用优先,活跃数越低,越优先调用,相同活跃数的进行加权随机。活跃数指调用前后计数差(针对特定提供者:请求发送数 - 响应返回数),表特定提供者的任务堆积量,活跃数越低,代表该提供者处理能力越强。

  • 使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大;相对的,处理能力越强的节点,处理更多的请求。
public class LeastActiveLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "leastactive";

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        // Number of invokers
        int length = invokers.size();
        // The least active value of all invokers
        int leastActive = -1;
        // The number of invokers having the same least active value (leastActive)
        int leastCount = 0;
        // The index of invokers having the same least active value (leastActive)
        int[] leastIndexes = new int[length];
        // the weight of every invokers
        int[] weights = new int[length];
        // The sum of the warmup weights of all the least active invokers
        int totalWeight = 0;
        // The weight of the first least active invoker
        int firstWeight = 0;
        // Every least active invoker has the same weight value?
        boolean sameWeight = true;


        // Filter out all the least active invokers
        for (int i = 0; i < length; i++) {
            Invoker<T> invoker = invokers.get(i);
            // Get the active number of the invoker
            int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
            // Get the weight of the invoker's configuration. The default value is 100.
            int afterWarmup = getWeight(invoker, invocation);
            // save for later use
            weights[i] = afterWarmup;
            // If it is the first invoker or the active number of the invoker is less than the current least active number
            if (leastActive == -1 || active < leastActive) {
                // Reset the active number of the current invoker to the least active number
                leastActive = active;
                // Reset the number of least active invokers
                leastCount = 1;
                // Put the first least active invoker first in leastIndexes
                leastIndexes[0] = i;
                // Reset totalWeight
                totalWeight = afterWarmup;
                // Record the weight the first least active invoker
                firstWeight = afterWarmup;
                // Each invoke has the same weight (only one invoker here)
                sameWeight = true;
                // If current invoker's active value equals with leaseActive, then accumulating.
            } else if (active == leastActive) {
                // Record the index of the least active invoker in leastIndexes order
                leastIndexes[leastCount++] = i;
                // Accumulate the total weight of the least active invoker
                totalWeight += afterWarmup;
                // If every invoker has the same weight?
                if (sameWeight && afterWarmup != firstWeight) {
                    sameWeight = false;
                }
            }
        }
        // Choose an invoker from all the least active invokers
        if (leastCount == 1) {
            // If we got exactly one invoker having the least active value, return this invoker directly.
            return invokers.get(leastIndexes[0]);
        }
        if (!sameWeight && totalWeight > 0) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on 
            // totalWeight.
            int offsetWeight = ThreadLocalRandom.current().nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < leastCount; i++) {
                int leastIndex = leastIndexes[i];
                offsetWeight -= weights[leastIndex];
                if (offsetWeight < 0) {
                    return invokers.get(leastIndex);
                }
            }
        }
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(leastIndexes[ThreadLocalRandom.current().nextInt(leastCount)]);
    }

如果要使用它,则需要设置loadBalance参数为leastactive, (public static final String NAME = “leastactive”😉

ShortestResponse

加权最短响应优先,在最近一个滑动窗口中,响应时间越短,越优先调用。相同响应时间的进行加权随机。使得响应时间越快的提供者,处理更多的请求。

  • 缺点:可能会造成流量过于集中于高性能节点的问题。这里的响应时间 = 某个提供者在窗口时间内的平均响应时间,窗口时间默认是 30s。
public class ShortestResponseLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "shortestresponse";

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        // Number of invokers
        int length = invokers.size();
        // Estimated shortest response time of all invokers
        long shortestResponse = Long.MAX_VALUE;
        // The number of invokers having the same estimated shortest response time
        int shortestCount = 0;
        // The index of invokers having the same estimated shortest response time
        int[] shortestIndexes = new int[length];
        // the weight of every invokers
        int[] weights = new int[length];
        // The sum of the warmup weights of all the shortest response  invokers
        int totalWeight = 0;
        // The weight of the first shortest response invokers
        int firstWeight = 0;
        // Every shortest response invoker has the same weight value?
        boolean sameWeight = true;

        // Filter out all the shortest response invokers
        for (int i = 0; i < length; i++) {
            Invoker<T> invoker = invokers.get(i);
            RpcStatus rpcStatus = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName());
            // Calculate the estimated response time from the product of active connections and succeeded average elapsed time.
            long succeededAverageElapsed = rpcStatus.getSucceededAverageElapsed();
            int active = rpcStatus.getActive();
            long estimateResponse = succeededAverageElapsed * active;
            int afterWarmup = getWeight(invoker, invocation);
            weights[i] = afterWarmup;
            // Same as LeastActiveLoadBalance
            if (estimateResponse < shortestResponse) {
                shortestResponse = estimateResponse;
                shortestCount = 1;
                shortestIndexes[0] = i;
                totalWeight = afterWarmup;
                firstWeight = afterWarmup;
                sameWeight = true;
            } else if (estimateResponse == shortestResponse) {
                shortestIndexes[shortestCount++] = i;
                totalWeight += afterWarmup;
                if (sameWeight && i > 0
                        && afterWarmup != firstWeight) {
                    sameWeight = false;
                }
            }
        }
        if (shortestCount == 1) {
            return invokers.get(shortestIndexes[0]);
        }
        if (!sameWeight && totalWeight > 0) {
            int offsetWeight = ThreadLocalRandom.current().nextInt(totalWeight);
            for (int i = 0; i < shortestCount; i++) {
                int shortestIndex = shortestIndexes[i];
                offsetWeight -= weights[shortestIndex];
                if (offsetWeight < 0) {
                    return invokers.get(shortestIndex);
                }
            }
        }
        return invokers.get(shortestIndexes[ThreadLocalRandom.current().nextInt(shortestCount)]);
    }

使用配置shortestresponse值进行设计对应策略

ConsistentHash

一致性 Hash,相同参数的请求总是发到同一提供者。当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

  • 缺省只对第一个参数Hash,如果要修改,请配置 <dubbo:parameter key=“hash.arguments” value=“0,1” />
  • 缺省用 160 份虚拟节点,如果要修改,请配置 <dubbo:parameter key=“hash.nodes” value=“320” />
public class ConsistentHashLoadBalance extends AbstractLoadBalance {
    public static final String NAME = "consistenthash";

    /**
     * Hash nodes name
     */
    public static final String HASH_NODES = "hash.nodes";

    /**
     * Hash arguments name
     */
    public static final String HASH_ARGUMENTS = "hash.arguments";

    private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = new ConcurrentHashMap<String, ConsistentHashSelector<?>>();

    @SuppressWarnings("unchecked")
    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String methodName = RpcUtils.getMethodName(invocation);
        String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;
        // using the hashcode of list to compute the hash only pay attention to the elements in the list
        int invokersHashCode = invokers.hashCode();
        ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
        if (selector == null || selector.identityHashCode != invokersHashCode) {
            selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, invokersHashCode));
            selector = (ConsistentHashSelector<T>) selectors.get(key);
        }
        return selector.select(invocation);
    }

    private static final class ConsistentHashSelector<T> {

        private final TreeMap<Long, Invoker<T>> virtualInvokers;

        private final int replicaNumber;

        private final int identityHashCode;

        private final int[] argumentIndex;

        ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
            this.identityHashCode = identityHashCode;
            URL url = invokers.get(0).getUrl();
            this.replicaNumber = url.getMethodParameter(methodName, HASH_NODES, 160);
            String[] index = COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, HASH_ARGUMENTS, "0"));
            argumentIndex = new int[index.length];
            for (int i = 0; i < index.length; i++) {
                argumentIndex[i] = Integer.parseInt(index[i]);
            }
            for (Invoker<T> invoker : invokers) {
                String address = invoker.getUrl().getAddress();
                for (int i = 0; i < replicaNumber / 4; i++) {
                    byte[] digest = Bytes.getMD5(address + i);
                    for (int h = 0; h < 4; h++) {
                        long m = hash(digest, h);
                        virtualInvokers.put(m, invoker);
                    }
                }
            }
        }

        public Invoker<T> select(Invocation invocation) {
            String key = toKey(invocation.getArguments());
            byte[] digest = Bytes.getMD5(key);
            return selectForKey(hash(digest, 0));
        }

        private String toKey(Object[] args) {
            StringBuilder buf = new StringBuilder();
            for (int i : argumentIndex) {
                if (i >= 0 && i < args.length) {
                    buf.append(args[i]);
                }
            }
            return buf.toString();
        }

        private Invoker<T> selectForKey(long hash) {
            Map.Entry<Long, Invoker<T>> entry = virtualInvokers.ceilingEntry(hash);
            if (entry == null) {
                entry = virtualInvokers.firstEntry();
            }
            return entry.getValue();
        }

        private long hash(byte[] digest, int number) {
            return (((long) (digest[3 + number * 4] & 0xFF) << 24)
                    | ((long) (digest[2 + number * 4] & 0xFF) << 16)
                    | ((long) (digest[1 + number * 4] & 0xFF) << 8)
                    | (digest[number * 4] & 0xFF))
                    & 0xFFFFFFFFL;
        }
    }

使用配置consistenthash值进行设计对应策略

开发配置使用

XML配置模式

服务端服务类级别(设定)
<dubbo:service interface="..." loadbalance="random | leastactive | shortestresponse | consistenthash" />
客户端服务类级别(设定)
<dubbo:reference interface="..." loadbalance="random | leastactive | shortestresponse | consistenthash" />
服务端方法级别(设定)
<dubbo:service interface="...">
    <dubbo:method name="..." loadbalance="random | leastactive | shortestresponse | consistenthash"/>
</dubbo:service>
客户端方法级别(设定)
<dubbo:reference interface="...">
    <dubbo:method name="..." loadbalance="random | leastactive | shortestresponse | consistenthash"/>
</dubbo:reference>

XML配置模式

服务端服务类级别(设定)
@DubboService(loadbalance = “random | leastactive | shortestresponse | consistenthash”)
客户端服务类级别(设定)
@DubboReference(loadbalance = “random | leastactive | shortestresponse | consistenthash”)

方法级别就不一一展示了!

API 配置
服务端服务类级别(设定)
ServiceConfig serviceConfig= new ServiceConfig();
serviceConfig.setLoadBalance(“random | leastactive | shortestresponse | consistenthash”);
客户端服务类级别(设定)
ReferenceConfig referenceConfig = new ReferenceConfig();
referenceConfig.setLoadBalance(“random | leastactive | shortestresponse | consistenthash”);
Properties 配置
服务端服务类级别(设定)
dubbo.service.loadbalance=random | leastactive | shortestresponse | consistenthash
客户端服务类级别(设定)
dubbo.reference.loadbalance=random | leastactive | shortestresponse | consistenthash

一致性Hash模式,默认采用第一个参数作为哈希 key,如果需要切换参数,可以指定 hash.arguments 属性

ReferenceConfig<DemoService> referenceConfig = new ReferenceConfig<DemoService>();
// ... init
Map<String, String> parameters = new HashMap<String, String>();
parameters.put("hash.arguments", "1");
parameters.put("sayHello.hash.arguments", "0,1");
referenceConfig.setParameters(parameters);
referenceConfig.setLoadBalance("consistenthash");
referenceConfig.get();

负载均衡SPI扩展

扩展说明

从多个服务提供方中选择一个进行调用

扩展接口
org.apache.dubbo.rpc.cluster.LoadBalance
扩展配置
<dubbo:protocol loadbalance="xxx" />
<!-- 缺省值设置,当<dubbo:protocol>没有配置loadbalance时,使用此配置 -->
<dubbo:provider loadbalance="xxx" />
已知扩展
org.apache.dubbo.rpc.cluster.loadbalance.RandomLoadBalance
org.apache.dubbo.rpc.cluster.loadbalance.RoundRobinLoadBalance
org.apache.dubbo.rpc.cluster.loadbalance.LeastActiveLoadBalance
org.apache.dubbo.rpc.cluster.loadbalance.ConsistentHashLoadBalance
org.apache.dubbo.rpc.cluster.loadbalance.ShortestResponseLoadBalance
扩展示例
项目结构
src
 |-main
    |-java
        |-com
            |-xxx
                |-XxxLoadBalance.java (实现LoadBalance接口)
    |-resources
        |-META-INF
            |-dubbo
                |-org.apache.dubbo.rpc.cluster.LoadBalance (纯文本文件,内容为:xxx=com.xxx.XxxLoadBalance)
XxxLoadBalance.java:
package com.xxx;
 
import org.apache.dubbo.rpc.cluster.LoadBalance;
import org.apache.dubbo.rpc.Invoker;
import org.apache.dubbo.rpc.Invocation;
import org.apache.dubbo.rpc.RpcException; 
 
public class XxxLoadBalance implements LoadBalance {
    public <T> Invoker<T> select(List<Invoker<T>> invokers, Invocation invocation) throws RpcException {
        // ...
    }
}
文件目录
META-INF/dubbo/org.apache.dubbo.rpc.cluster.LoadBalance:
文件内容
xxx=com.xxx.XxxLoadBalance