代码地址:https://github.com/Chakid/ImageProcess

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。边缘检测是特征提取中的一个研究领域。
图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大值和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。
如果将边缘认为是一定数量点亮度发生变化的地方,那么边缘检测大体上就是计算这个亮度变化的导数。

(一)检测方法

边缘检测的方法大致可分为两类:基于搜索和基于零交叉

基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示,例如梯度模,然后,用计算估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。

基于零交叉的方法找到由图像得到的二阶导数的零交叉点来定位边缘,通常用拉普拉斯算子或非线性微分方程的零交叉点。

滤波作为边缘检测的预处理通常是必要的,通常采用高斯滤波。

(二)Sobel边缘检测算子

Sobel边缘检测算法比较简单,实际应用中效率比canny边缘检测效率要高,但是边缘不如Canny检测的准确,但是很多实际应用的场合,sobel边缘却是首选,Sobel算子是高斯平滑与微分操作的结合体,所以其抗噪声能力很强,用途较多。尤其是效率要求较高,而对细纹理不太关系的时候。算子的模板为:
Sobel算子是一种带有方向的过滤器,openCV中Sobel算子的函数为cv2.Sobel ()

Sobel_x_or_y = cv2.Sobel(src, ddepth, dx, dy, dst, ksize, scale, delta, borderType)

dst及dst之后的参数都是可选参数。

第一个参数是传入的图像,第二个参数是图像的深度,dx和dy指的是求导的阶数,0表示这个方向上没有求导,所填的数一般为0、1、2。ksize是Sobel算子的大小,即卷积核的大小,必须为奇数1、3、5、7。如果ksize=-1,就演变成为3x3的Scharr算子,scale是缩放导数的比例常数,默认情况为没有伸缩系数。borderType是判断图像边界的模式,这个参数默认值为cv2.BORDER_DEFAULT
代码实现:

# coding:utf-8

'''
边缘检测
'''

import cv2
# Sobel边缘检测算子
img = cv2.imread('img/cxk.jpg', 0)
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
# cv2.convertScaleAbs(src[, dst[, alpha[, beta]]])
# 可选参数alpha是伸缩系数,beta是加到结果上的一个值,结果返回uint类型的图像
Scale_absX = cv2.convertScaleAbs(x)  # convert 转换  scale 缩放
Scale_absY = cv2.convertScaleAbs(y)
result = cv2.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0)
cv2.imshow('img', img)
cv2.imshow('Scale_absX', Scale_absX)
cv2.imshow('Scale_absY', Scale_absY)
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行效果:

边缘检测 java 边缘检测的作用_搜索

边缘检测 java 边缘检测的作用_搜索_02

边缘检测 java 边缘检测的作用_边缘检测 java_03