最近一直在开发一个用于自动发帖的工具,用HttpClient模拟客户端浏览器注册发帖。但是碰到了图形验证码的问题了,对单数字的验证码,通过一些OCR引擎,如:tesseract,AspriseOCR很容易解决问题。但碰到如CSDN论坛这中图形验证码就比较麻烦,必须先通过预处理。使图象二值化,黑白灰度,增加亮度。我的代码如下:



package myfilter;
 import java.io.*;
 import java.awt.image.*;
 import java.awt.geom.AffineTransform;
 import java.awt.color.ColorSpace;
 import java.awt.image.ConvolveOp;
 import java.awt.image.Kernel;
 import java.awt.image.BufferedImage;
 import javax.imageio.ImageIO;
 import java.awt.Toolkit;
 import java.awt.Image;



/**
  * <p>Title: Image Filter</p>
  *
  * <p>Description: image processing by filters </p>
  * <p>Copyright: Copyright (c) 2010</p>
  *
  * @author  
    gl74gs48@ 
    
 * @since jdk1.5.0
  * @version 1.0
  */
 public class MyImgFilter {
     BufferedImage image;
     private int iw, ih;
     private int[] pixels;




public MyImgFilter(BufferedImage image) {
         this.image = image;
         iw = image.getWidth();
         ih = image.getHeight();
         pixels = new int[iw * ih]; 
   
    }



/** 图像二值化 */
     public BufferedImage changeGrey() {




     

PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih, pixels,0, iw);
         try {
             pg.grabPixels();
         } catch (InterruptedException e) {
             e.printStackTrace();
         }
         // 设定二值化的域值,默认值为100
         int grey = 100;
         // 对图像进行二值化处理,Alpha值保持不变
         ColorModel cm = ColorModel.getRGBdefault();
         for (int i = 0; i < iw * ih; i++) {
             int red, green, blue;
             int alpha = cm.getAlpha(pixels[i]);
             if (cm.getRed(pixels[i]) > grey) {
                 red = 255;
             } else {
                 red = 0;
             }
             if (cm.getGreen(pixels[i]) > grey) {
                 green = 255;
             } else {
                 green = 0;
             }
             if (cm.getBlue(pixels[i]) > grey) {
                 blue = 255;
             } else {
                 blue = 0;
             }
             pixels[i] = alpha << 24 | red << 16 | green << 8 | blue; //通过移位重新构成某一点像素的RGB值
         }
         // 将数组中的象素产生一个图像
         Image tempImg=Toolkit.getDefaultToolkit().createImage(new MemoryImageSource(iw,ih, pixels, 0, iw));
         image = new BufferedImage(tempImg.getWidth(null),tempImg.getHeight(null), BufferedImage.TYPE_INT_BGR );
         image.createGraphics().drawImage(tempImg, 0, 0, null);
         return image;


 

}
     
     /** 中值滤波 */
     public BufferedImage getMedian() {
         PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,
                                            pixels,
                                            0, iw);
         try {
             pg.grabPixels();
         } catch (InterruptedException e) {
             e.printStackTrace();
         }
         // 对图像进行中值滤波,Alpha值保持不变
         ColorModel cm = ColorModel.getRGBdefault();
         for (int i = 1; i < ih - 1; i++) {
             for (int j = 1; j < iw - 1; j++) {
                 int red, green, blue;
                 int alpha = cm.getAlpha(pixels[i * iw + j]); 
   
                // int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                 int red4 = cm.getRed(pixels[i * iw + j - 1]);
                 int red5 = cm.getRed(pixels[i * iw + j]);
                 int red6 = cm.getRed(pixels[i * iw + j + 1]);
                 // int red8 = cm.getRed(pixels[(i + 1) * iw + j]); 
   
                // 水平方向进行中值滤波
                 if (red4 >= red5) {
                     if (red5 >= red6) {
                         red = red5;
                     } else {
                         if (red4 >= red6) {
                             red = red6;
                         } else {
                             red = red4;
                         }
                     }
                 } else {
                     if (red4 > red6) {
                         red = red4;
                     } else {
                         if (red5 > red6) {
                             red = red6;
                         } else {
                             red = red5;
                         }
                     }
                 } 
   
                int green4 = cm.getGreen(pixels[i * iw + j - 1]);
                 int green5 = cm.getGreen(pixels[i * iw + j]);
                 int green6 = cm.getGreen(pixels[i * iw + j + 1]); 
   
                // 水平方向进行中值滤波
                 if (green4 >= green5) {
                     if (green5 >= green6) {
                         green = green5;
                     } else {
                         if (green4 >= green6) {
                             green = green6;
                         } else {
                             green = green4;
                         }
                     }
                 } else {
                     if (green4 > green6) {
                         green = green4;
                     } else {
                         if (green5 > green6) {
                             green = green6;
                         } else {
                             green = green5;
                         }
                     }
                 } 
   
                // int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                 int blue4 = cm.getBlue(pixels[i * iw + j - 1]);
                 int blue5 = cm.getBlue(pixels[i * iw + j]);
                 int blue6 = cm.getBlue(pixels[i * iw + j + 1]);
                 // int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]); 
   
                // 水平方向进行中值滤波
                 if (blue4 >= blue5) {
                     if (blue5 >= blue6) {
                         blue = blue5;
                     } else {
                         if (blue4 >= blue6) {
                             blue = blue6;
                         } else {
                             blue = blue4;
                         }
                     }
                 } else {
                     if (blue4 > blue6) {
                         blue = blue4;
                     } else {
                         if (blue5 > blue6) {
                             blue = blue6;
                         } else {
                             blue = blue5;
                         }
                     }
                 }
                 pixels[i * iw +
                         j] = alpha << 24 | red << 16 | green << 8 | blue;
             }
         } 
   
        // 将数组中的象素产生一个图像
         Image tempImg=Toolkit.getDefaultToolkit().createImage(new MemoryImageSource(iw,ih, pixels, 0, iw));
         image = new BufferedImage(tempImg.getWidth(null),tempImg.getHeight(null), BufferedImage.TYPE_INT_BGR );
         image.createGraphics().drawImage(tempImg, 0, 0, null);
         return image; 
   
    }
 
   

 
   
 
    
    public BufferedImage getGrey() {
         ColorConvertOp ccp=new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
         return image=ccp.filter(image,null);
     } 
   
    //Brighten using a linear formula that increases all color values
     public BufferedImage getBrighten() {
         RescaleOp rop=new RescaleOp(1.25f, 0, null);
         return image=rop.filter(image,null);
     }
     //Blur by "convolving" the image with a matrix
     public BufferedImage getBlur() {
         float[] data = {
                        .1111f, .1111f, .1111f,
                        .1111f, .1111f, .1111f,
                        .1111f, .1111f, .1111f, };
         ConvolveOp cop = new ConvolveOp(new Kernel(3, 3, data));
         return image=cop.filter(image,null); 
   
    }
 
   
    // Sharpen by using a different matrix
     public BufferedImage getSharpen() {
         float[] data = {
                        0.0f, -0.75f, 0.0f,
                        -0.75f, 4.0f, -0.75f,
                        0.0f, -0.75f, 0.0f};
         ConvolveOp cop = new ConvolveOp(new Kernel(3, 3, data));
         return image=cop.filter(image,null);
     }
     // 11) Rotate the image 180 degrees about its center point
     public BufferedImage getRotate() {
         AffineTransformOp atop=new AffineTransformOp(AffineTransform.getRotateInstance(Math.PI,image.getWidth()/2,image.getHeight()/2),
                 AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
         return image=atop.filter(image,null);
     }
     
     public BufferedImage getProcessedImg()
     {
         return image;
     } 
   
    public static void main(String[] args) throws IOException {
         FileInputStream fin=new FileInputStream(args[0]);
         BufferedImage bi=ImageIO.read(fin);
         MyImgFilter flt=new MyImgFilter(bi);
         flt.changeGrey();
         flt.getGrey();
         flt.getBrighten();
         bi=flt.getProcessedImg(); 
   
        String pname=args[0].substring(0,args[0].lastIndexOf("."));
         File file = new File(pname+".jpg");
         ImageIO.write(bi, "jpg", file);
     } 
   
}



运行java myfilter.MyImgFilter t6.bmp,请确认图片t6.bmp与myfilter目录在同一目录下。

顺便说一下,在JDK1.5下,ImageIO可以输出JPG,BMP,PNG三种格式图片,但不支持GIF图片输出。

经处理后图片的识别率大大提高。

部分代码参考http://ykf.javaeye.com/blog/212431及《Java Examples In A Nutshell 3rd》




本文引用地址:

http://blog.sciencenet.cn/blog-47522-542798.html 



最近一直在开发一个用于自动发帖的工具,用HttpClient模拟客户端浏览器注册发帖。但是碰到了图形验证码的问题了,对单数字的验证码,通过一些OCR引擎,如:tesseract,AspriseOCR很容易解决问题。但碰到如CSDN论坛这中图形验证码就比较麻烦,必须先通过预处理。使图象二值化,黑白灰度,增加亮度。我的代码如下:



package myfilter;
 import java.io.*;
 import java.awt.image.*;
 import java.awt.geom.AffineTransform;
 import java.awt.color.ColorSpace;
 import java.awt.image.ConvolveOp;
 import java.awt.image.Kernel;
 import java.awt.image.BufferedImage;
 import javax.imageio.ImageIO;
 import java.awt.Toolkit;
 import java.awt.Image;



/**
  * <p>Title: Image Filter</p>
  *
  * <p>Description: image processing by filters </p>
  * <p>Copyright: Copyright (c) 2010</p>
  *
  * @author  
    gl74gs48@ 
    
 * @since jdk1.5.0
  * @version 1.0
  */
 public class MyImgFilter {
     BufferedImage image;
     private int iw, ih;
     private int[] pixels;



 

public MyImgFilter(BufferedImage image) {
         this.image = image;
         iw = image.getWidth();
         ih = image.getHeight();
         pixels = new int[iw * ih]; 
   
    }


/** 图像二值化 */
     public BufferedImage changeGrey() {



PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih, pixels,0, iw);
         try {
             pg.grabPixels();
         } catch (InterruptedException e) {
             e.printStackTrace();
         }
         // 设定二值化的域值,默认值为100
         int grey = 100;
         // 对图像进行二值化处理,Alpha值保持不变
         ColorModel cm = ColorModel.getRGBdefault();
         for (int i = 0; i < iw * ih; i++) {
             int red, green, blue;
             int alpha = cm.getAlpha(pixels[i]);
             if (cm.getRed(pixels[i]) > grey) {
                 red = 255;
             } else {
                 red = 0;
             }
             if (cm.getGreen(pixels[i]) > grey) {
                 green = 255;
             } else {
                 green = 0;
             }
             if (cm.getBlue(pixels[i]) > grey) {
                 blue = 255;
             } else {
                 blue = 0;
             }
             pixels[i] = alpha << 24 | red << 16 | green << 8 | blue; //通过移位重新构成某一点像素的RGB值
         }
         // 将数组中的象素产生一个图像
         Image tempImg=Toolkit.getDefaultToolkit().createImage(new MemoryImageSource(iw,ih, pixels, 0, iw));
         image = new BufferedImage(tempImg.getWidth(null),tempImg.getHeight(null), BufferedImage.TYPE_INT_BGR );
         image.createGraphics().drawImage(tempImg, 0, 0, null);
         return image; 
   
    }
     
     /** 中值滤波 */
     public BufferedImage getMedian() {
         PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,
                                            pixels,
                                            0, iw);
         try {
             pg.grabPixels();
         } catch (InterruptedException e) {
             e.printStackTrace();
         }
         // 对图像进行中值滤波,Alpha值保持不变
         ColorModel cm = ColorModel.getRGBdefault();
         for (int i = 1; i < ih - 1; i++) {
             for (int j = 1; j < iw - 1; j++) {
                 int red, green, blue;
                 int alpha = cm.getAlpha(pixels[i * iw + j]); 
   
                // int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                 int red4 = cm.getRed(pixels[i * iw + j - 1]);
                 int red5 = cm.getRed(pixels[i * iw + j]);
                 int red6 = cm.getRed(pixels[i * iw + j + 1]);
                 // int red8 = cm.getRed(pixels[(i + 1) * iw + j]); 
   
                // 水平方向进行中值滤波
                 if (red4 >= red5) {
                     if (red5 >= red6) {
                         red = red5;
                     } else {
                         if (red4 >= red6) {
                             red = red6;
                         } else {
                             red = red4;
                         }
                     }
                 } else {
                     if (red4 > red6) {
                         red = red4;
                     } else {
                         if (red5 > red6) {
                             red = red6;
                         } else {
                             red = red5;
                         }
                     }
                 } 
   
                int green4 = cm.getGreen(pixels[i * iw + j - 1]);
                 int green5 = cm.getGreen(pixels[i * iw + j]);
                 int green6 = cm.getGreen(pixels[i * iw + j + 1]); 
   
                // 水平方向进行中值滤波
                 if (green4 >= green5) {
                     if (green5 >= green6) {
                         green = green5;
                     } else {
                         if (green4 >= green6) {
                             green = green6;
                         } else {
                             green = green4;
                         }
                     }
                 } else {
                     if (green4 > green6) {
                         green = green4;
                     } else {
                         if (green5 > green6) {
                             green = green6;
                         } else {
                             green = green5;
                         }
                     }
                 } 
   
                // int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                 int blue4 = cm.getBlue(pixels[i * iw + j - 1]);
                 int blue5 = cm.getBlue(pixels[i * iw + j]);
                 int blue6 = cm.getBlue(pixels[i * iw + j + 1]);
                 // int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]); 
   
                // 水平方向进行中值滤波
                 if (blue4 >= blue5) {
                     if (blue5 >= blue6) {
                         blue = blue5;
                     } else {
                         if (blue4 >= blue6) {
                             blue = blue6;
                         } else {
                             blue = blue4;
                         }
                     }
                 } else {
                     if (blue4 > blue6) {
                         blue = blue4;
                     } else {
                         if (blue5 > blue6) {
                             blue = blue6;
                         } else {
                             blue = blue5;
                         }
                     }
                 }
                 pixels[i * iw +
                         j] = alpha << 24 | red << 16 | green << 8 | blue;
             }
         } 
   
        // 将数组中的象素产生一个图像
         Image tempImg=Toolkit.getDefaultToolkit().createImage(new MemoryImageSource(iw,ih, pixels, 0, iw));
         image = new BufferedImage(tempImg.getWidth(null),tempImg.getHeight(null), BufferedImage.TYPE_INT_BGR );
         image.createGraphics().drawImage(tempImg, 0, 0, null);
         return image; 
   
    }
 
   

 
   
 
    
    public BufferedImage getGrey() {
         ColorConvertOp ccp=new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
         return image=ccp.filter(image,null);
     } 
   
    //Brighten using a linear formula that increases all color values
     public BufferedImage getBrighten() {
         RescaleOp rop=new RescaleOp(1.25f, 0, null);
         return image=rop.filter(image,null);
     }
     //Blur by "convolving" the image with a matrix
     public BufferedImage getBlur() {
         float[] data = {
                        .1111f, .1111f, .1111f,
                        .1111f, .1111f, .1111f,
                        .1111f, .1111f, .1111f, };
         ConvolveOp cop = new ConvolveOp(new Kernel(3, 3, data));
         return image=cop.filter(image,null); 
   
    }
 
   
    // Sharpen by using a different matrix
     public BufferedImage getSharpen() {
         float[] data = {
                        0.0f, -0.75f, 0.0f,
                        -0.75f, 4.0f, -0.75f,
                        0.0f, -0.75f, 0.0f};
         ConvolveOp cop = new ConvolveOp(new Kernel(3, 3, data));
         return image=cop.filter(image,null);
     }
     // 11) Rotate the image 180 degrees about its center point
     public BufferedImage getRotate() {
         AffineTransformOp atop=new AffineTransformOp(AffineTransform.getRotateInstance(Math.PI,image.getWidth()/2,image.getHeight()/2),
                 AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
         return image=atop.filter(image,null);
     }
     
     public BufferedImage getProcessedImg()
     {
         return image;
     } 
   
    public static void main(String[] args) throws IOException {
         FileInputStream fin=new FileInputStream(args[0]);
         BufferedImage bi=ImageIO.read(fin);
         MyImgFilter flt=new MyImgFilter(bi);
         flt.changeGrey();
         flt.getGrey();
         flt.getBrighten();
         bi=flt.getProcessedImg(); 
   
        String pname=args[0].substring(0,args[0].lastIndexOf("."));
         File file = new File(pname+".jpg");
         ImageIO.write(bi, "jpg", file);
     } 
   
}




运行java myfilter.MyImgFilter t6.bmp,请确认图片t6.bmp与myfilter目录在同一目录下。

顺便说一下,在JDK1.5下,ImageIO可以输出JPG,BMP,PNG三种格式图片,但不支持GIF图片输出。

经处理后图片的识别率大大提高。

部分代码参考http://ykf.javaeye.com/blog/212431及《Java Examples In A Nutshell 3rd》