文章目录

  • 分布式事务调优
  • 一、如何设计更优的分布式锁
  • 1、数据库实现分布式锁
  • 2、Zookeeper 实现分布式锁
  • 3、Redis 实现分布式锁
  • 4、Redlock 算法
  • 总结
  • 二、电商系统的分布式事务调优
  • 1、分布式事务解决方案
  • 1.XA 规范
  • 2.二阶提交和三阶提交
  • 3. 事务补偿机制(TCC)
  • 4.业务无侵入方案——Seata(Fescar)
  • 总结


分布式事务调优

一、如何设计更优的分布式锁

在 JVM 中,在多线程并发的情况下,我们可以使用同步锁或 Lock 锁,保证在同一时间内,只能有一个线程修改共享变量或执行代码块。但现在我们的服务基本都是基于分布式集群来实现部署的,对于一些共享资源,例如我们之前讨论过的库存,在分布式环境下使用Java 锁的方式就失去作用了。

这时,我们就需要实现分布式锁来保证共享资源的原子性。除此之外,分布式锁也经常用来避免分布式中的不同节点执行重复性的工作,例如一个定时发短信的任务,在分布式集群中,我们只需要保证一个服务节点发送短信即可,一定要避免多个节点重复发送短信给同一个用户。

因为数据库实现一个分布式锁比较简单易懂,直接基于数据库实现就行了,不需要再引入第三方中间件,所以这是很多分布式业务实现分布式锁的首选。但是数据库实现的分布式锁在一定程度上,存在性能瓶颈。

接下来我们一起了解下如何使用数据库实现分布式锁,其性能瓶颈到底在哪,有没有其它实现方式可以优化分布式锁。

1、数据库实现分布式锁

首先,我们应该创建一个锁表,通过创建和查询数据来保证一个数据的原子性:

CREATE TABLE `order`  (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `order_no` int(11) DEFAULT NULL,
    `pay_money` decimal(10, 2) DEFAULT NULL,
    `status` int(4) DEFAULT NULL,
    `create_date` datetime(0) DEFAULT NULL,
    `delete_flag` int(4) DEFAULT NULL,
    PRIMARY KEY (`id`) USING BTREE,
    INDEX `idx_status`(`status`) USING BTREE,
    INDEX `idx_order`(`order_no`) USING BTREE
) ENGINE = InnoDB

其次,如果是校验订单的幂等性,就要先查询该记录是否存在数据库中,查询的时候要防止幻读,如果不存在,就插入到数据库,否则,放弃操作。

select id from `order` where `order_no`= 'xxxx' for update

最后注意下,除了查询时防止幻读,我们还需要保证查询和插入是在同一个事务中,因此我们需要声明事务,具体的实现代码如下:

@Transactional
public int addOrderRecord(Order order) {
    if(orderDao.selectOrderRecord(order)==null){
        int result = orderDao.addOrderRecord(order);
        if(result>0){
            return 1;
        }
    }
    return 0;
}

到这,我们订单幂等性校验的分布式锁就实现了。

我想你应该能发现为什么这种方式会存在性能瓶颈了。在 RR 事务级别,select 的 for update 操作是基于间隙锁 gap lock 实现的,这是一种悲观锁的实现方式,所以存在阻塞问题。

因此在高并发情况下,当有大量的请求进来时,大部分的请求都会进行排队等待。为了保证数据库的稳定性,事务的超时时间往往又设置得很小,所以就会出现大量事务被中断的情况。

除了阻塞等待之外,因为订单没有删除操作,所以这张锁表的数据将会逐渐累积,我们需要设置另外一个线程,隔一段时间就去删除该表中的过期订单,这就增加了业务的复杂度。

除了这种幂等性校验的分布式锁,有一些单纯基于数据库实现的分布式锁代码块或对象,是需要在锁释放时,删除或修改数据的。如果在获取锁之后,锁一直没有获得释放,即数据没有被删除或修改,这将会引发死锁问题。

2、Zookeeper 实现分布式锁

首先,我们需要建立一个父节点,节点类型为持久节点(PERSISTENT) ,每当需要访问共享资源时,就会在父节点下建立相应的顺序子节点,节点类型为临时节点(EPHEMERAL),且标记为有序性(SEQUENTIAL),并且以临时节点名称 + 父节点名称 + 顺序号组成特定的名字。

在建立子节点后,对父节点下面的所有以临时节点名称 name 开头的子节点进行排序,判断刚刚建立的子节点顺序号是否是最小的节点,如果是最小节点,则获得锁。

如果不是最小节点,则阻塞等待锁,并且获得该节点的上一顺序节点,为其注册监听事件,等待节点对应的操作获得锁。当调用完共享资源后,删除该节点,关闭 zk,进而可以触发监听事件,释放该锁。

java 分布式系统 事务 java分布式事务锁_如何设计更优的分布式锁

以上实现的分布式锁是严格按照顺序访问的并发锁。一般我们还可以直接引用 Curator 框架来实现 Zookeeper 分布式锁,代码如下:

InterProcessMutex lock = new InterProcessMutex(client, lockPath);
if ( lock.acquire(maxWait, waitUnit) ) 
{
    try 
    {
        // do some work inside of the critical section here
    }
    finally
    {
        lock.release();
    }
}

Zookeeper 实现的分布式锁,例如相对数据库实现,有很多优点。Zookeeper 是集群实现,可以避免单点问题,且能保证每次操作都可以有效地释放锁,这是因为一旦应用服务挂掉了,临时节点会因为 session 连接断开而自动删除掉。

由于频繁地创建和删除结点,加上大量的 Watch 事件,对 Zookeeper 集群来说,压力非常大。且从性能上来说,其与接下来我要讲的 Redis 实现的分布式锁相比,还是存在一定的差距。

3、Redis 实现分布式锁

相对于前两种实现方式,基于 Redis 实现的分布式锁是最为复杂的,但性能是最佳的。

大部分开发人员利用 Redis 实现分布式锁的方式,都是使用 SETNX+EXPIRE 组合来实现,在 Redis 2.6.12 版本之前,具体实现代码如下:

public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId) {
    Long result = jedis.setnx(lockKey, requestId);    // 设置锁
    if (result == 1) {       // 获取锁成功
        // 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
        jedis.expire(lockKey, expireTime);            // 通过过期时间删除锁
        return true;
    }
    return false;
}

这种方式实现的分布式锁,是通过 setnx() 方法设置锁,如果 lockKey 存在,则返回失败,否则返回成功。设置成功之后,为了能在完成同步代码之后成功释放锁,方法中还需要使用 expire() 方法给 lockKey 值设置一个过期时间,确认 key 值删除,避免出现锁无法释放,导致下一个线程无法获取到锁,即死锁问题。如果程序在设置过期时间之前、设置锁之后出现崩溃,此时如果 lockKey 没有设置过期时间,将会出现死锁问题。

在 Redis 2.6.12 版本后 SETNX 增加了过期时间参数:

private static final String LOCK_SUCCESS = "OK";
private static final String SET_IF_NOT_EXIST = "NX";
private static final String SET_WITH_EXPIRE_TIME = "PX";

/**
* 尝试获取分布式锁
* @param jedis Redis 客户端
* @param lockKey 锁
* @param requestId 请求标识
* @param expireTime 超期时间
* @return 是否获取成功
*/
public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, String expireTime) {

    String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME);
    if (LOCK_SUCCESS.equals(result)) {
        return true;
    }
    return false;
}

我们也可以通过 Lua 脚本来实现锁的设置和过期时间的原子性,再通过 jedis.eval() 方法运行该脚本:

// 加锁脚本
private static final String SCRIPT_LOCK = "if redis.call('setnx', key, content) == 1 then redis.call('pexpire', key, ttl) end return lockSet";

// 解锁脚本
private static final String SCRIPT_UNLOCK = "if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end";

虽然 SETNX 方法保证了设置锁和过期时间的原子性,但如果我们设置的过期时间比较短,而执行业务时间比较长,就会存在锁代码块失效的问题。我们需要将过期时间设置得足够长,来保证以上问题不会出现。

这个方案是目前最优的分布式锁方案,但如果是在 Redis 集群环境下,依然存在问题。由于 Redis 集群数据同步到各个节点时是异步的,如果在 Master 节点获取到锁后,在没有同步到其它节点时,Master 节点崩溃了,此时新的 Master 节点依然可以获取锁,所以多个应用服务可以同时获取到锁。

4、Redlock 算法

Redisson 由 Redis 官方推出,它是一个在 Redis 的基础上实现的 Java 驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的 Java 常用对象,还提供了许多分布式服务。Redisson 是基于 netty 通信框架实现的,所以支持非阻塞通信,性能相对于我们熟悉的 Jedis 会好一些

Redisson 中实现了 Redis 分布式锁,且支持单点模式和集群模式。在集群模式下,Redisson 使用了 Redlock 算法,避免在 Master 节点崩溃切换到另外一个 Master 时,多个应用同时获得锁。我们可以通过一个应用服务获取分布式锁的流程,了解下 Redlock 算法的实现:

在不同的节点上使用单个实例获取锁的方式去获得锁,且每次获取锁都有超时时间,如果请求超时,则认为该节点不可用。当应用服务成功获取锁的 Redis 节点超过半数(N/2+1,N 为节点数) 时,并且获取锁消耗的实际时间不超过锁的过期时间,则获取锁成功。

一旦获取锁成功,就会重新计算释放锁的时间,该时间是由原来释放锁的时间减去获取锁所消耗的时间;而如果获取锁失败,客户端依然会释放获取锁成功的节点。

具体的代码实现如下:

  1. 首先引入 jar 包:
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.8.2</version>
</dependency>
  1. 实现 Redisson 的配置文件:
@Bean
public RedissonClient redissonClient() {
    Config config = new Config();
    config.useClusterServers()
        .setScanInterval(2000) // 集群状态扫描间隔时间,单位是毫秒
        .addNodeAddress("redis://127.0.0.1:7000").setPassword("1")
        .addNodeAddress("redis://127.0.0.1:7001").setPassword("1")
        .addNodeAddress("redis://127.0.0.1:7002")
        .setPassword("1");
    return Redisson.create(config);
}
  1. 获取锁操作:
long waitTimeout = 10;
long leaseTime = 1;
RLock lock1 = redissonClient1.getLock("lock1");
RLock lock2 = redissonClient2.getLock("lock2");
RLock lock3 = redissonClient3.getLock("lock3");

RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
// 同时加锁:lock1 lock2 lock3
// 红锁在大部分节点上加锁成功就算成功,且设置总超时时间以及单个节点超时时间
redLock.trylock(waitTimeout,leaseTime,TimeUnit.SECONDS);
...
redLock.unlock();

总结

实现分布式锁的方式有很多,有最简单的数据库实现,还有 Zookeeper 多节点实现和缓存实现。我们可以分别对这三种实现方式进行性能压测,可以发现在同样的服务器配置下, Redis 的性能是最好的,Zookeeper 次之,数据库最差。

从实现方式和可靠性来说,Zookeeper 的实现方式简单,且基于分布式集群,可以避免单点问题,具有比较高的可靠性。因此,在对业务性能要求不是特别高的场景中,我建议使用 Zookeeper 实现的分布式锁。

二、电商系统的分布式事务调优

如今,大部分公司的服务基本都实现了微服务化,首先是业务需求,为了解耦业务;其次是为了减少业务与业务之间的相互影响。

电商系统亦是如此,大部分公司的电商系统都是分为了不同服务模块,例如商品模块、订单模块、库存模块等等。事实上,分解服务是一把双刃剑,可以带来一些开发、性能以及运维上的优势,但同时也会增加业务开发的逻辑复杂度。其中最为突出的就是分布式事务了。

通常,存在分布式事务的服务架构部署有以下两种:同服务不同数据库,不同服务不同数据库。我们以商城为例,用图示说明下这两种部署:

java 分布式系统 事务 java分布式事务锁_XA规范_02

java 分布式系统 事务 java分布式事务锁_java 分布式系统 事务_03

1、分布式事务解决方案

我们讲过,在单个数据库的情况下,数据事务操作具有 ACID 四个特性,但如果在一个事务中操作多个数据库,则无法使用数据库事务来保证一致性。

当两个数据库操作数据时,可能存在一个数据库操作成功,而另一个数据库操作失败的情况,我们无法通过单个数据库事务来回滚两个数据操作。而分布式事务就是为了解决在同一个事务下,不同节点的数据库操作数据不一致的问题

在一个事务操作请求多个服务或多个数据库节点时,要么所有请求成功,要么所有请求都失败回滚回去。通常,分布式事务的实现有多种方式,例如 XA 协议实现的二阶提交(2PC)、三阶提交 (3PC),以及 TCC 补偿性事务。

XA 协议是由 X/Open 组织提出的一个分布式事务处理规范,目前 MySQL 中只有 InnoDB 存储引擎支持 XA 协议。

1.XA 规范

在 XA 规范之前,存在着一个 DTP 模型,该模型规范了分布式事务的模型设计。

DTP 规范中主要包含了 AP、RM、TM 三个部分,其中 AP 是应用程序,是事务发起和结束的地方;RM 是资源管理器,主要负责管理每个数据库的连接数据源;TM 是事务管理器,负责事务的全局管理,包括事务的生命周期管理和资源的分配协调等。

java 分布式系统 事务 java分布式事务锁_Redis 实现分布式锁_04

XA 则规范了 TM 与 RM 之间的通信接口,在 TM 与多个 RM 之间形成一个双向通信桥梁,从而在多个数据库资源下保证 ACID 四个特性。JTA 是基于 XA 规范实现的一套 Java 事务编程接口,是一种两阶段提交事务。

2.二阶提交和三阶提交

XA 规范实现的分布式事务属于二阶提交事务,顾名思义就是通过两个阶段来实现事务的提交。

在第一阶段,应用程序向事务管理器(TM)发起事务请求,而事务管理器则会分别向参与的各个资源管理器(RM)发送事务预处理请求(Prepare),此时这些资源管理器会打开本地数据库事务,然后开始执行数据库事务,但执行完成后并不会立刻提交事务,而是向事务管理器返回已就绪(Ready)或未就绪(Not Ready)状态。如果各个参与节点都返回状态了,就会进入第二阶段。

java 分布式系统 事务 java分布式事务锁_java 分布式系统 事务_05

到了第二阶段,如果资源管理器返回的都是就绪状态,事务管理器则会向各个资源管理器发送提交(Commit)通知,资源管理器则会完成本地数据库的事务提交,最终返回提交结果给事务管理器。

java 分布式系统 事务 java分布式事务锁_二阶提交和三阶提交_06

在第二阶段中,如果任意资源管理器返回了未就绪状态,此时事务管理器会向所有资源管理器发送事务回滚(Rollback)通知,此时各个资源管理器就会回滚本地数据库事务,释放资源,并返回结果通知。

java 分布式系统 事务 java分布式事务锁_二阶提交和三阶提交_07

但事实上,二阶事务提交也存在一些缺陷。

  • 第一,在整个流程中,我们会发现各个资源管理器节点存在阻塞,只有当所有的节点都准备完成之后,事务管理器才会发出进行全局事务提交的通知,这个过程如果很长,则会有很多节点长时间占用资源,从而影响整个节点的性能。

一旦资源管理器挂了,就会出现一直阻塞等待的情况。类似问题,我们可以通过设置事务超时时间来解决。

  • 第二,仍然存在数据不一致的可能性,例如,在最后通知提交全局事务时,由于网络故障,部分节点有可能收不到通知,由于这部分节点没有提交事务,就会导致数据不一致的情况出现。

而三阶事务(3PC)的出现就是为了减少此类问题的发生。

3PC 把 2PC 的准备阶段分为了准备阶段和预处理阶段,在第一阶段只是询问各个资源节点是否可以执行事务,而在第二阶段,所有的节点反馈可以执行事务,才开始执行事务操作,最后在第三阶段执行提交或回滚操作。并且在事务管理器和资源管理器中都引入了超时机制,如果在第三阶段,资源节点一直无法收到来自资源管理器的提交或回滚请求,它就会在超时之后,继续提交事务。

所以 3PC 可以通过超时机制,避免管理器挂掉所造成的长时间阻塞问题,但其实这样还是无法解决在最后提交全局事务时,由于网络故障无法通知到一些节点的问题,特别是回滚通知,这样会导致事务等待超时从而默认提交。

3. 事务补偿机制(TCC)

以上这种基于 XA 规范实现的事务提交,由于阻塞等性能问题,有着比较明显的低性能、低吞吐的特性。所以在抢购活动中使用该事务,很难满足系统的并发性能。

除了性能问题,JTA 只能解决同一服务下操作多数据源的分布式事务问题,换到微服务架构下,可能存在同一个事务操作,分别在不同服务上连接数据源,提交数据库操作。

而 TCC 正是为了解决以上问题而出现的一种分布式事务解决方案。TCC 采用最终一致性的方式实现了一种柔性分布式事务,与 XA 规范实现的二阶事务不同的是,TCC 的实现是基于服务层实现的一种二阶事务提交。

TCC 分为三个阶段,即 Try、Confirm、Cancel 三个阶段。

java 分布式系统 事务 java分布式事务锁_XA规范_08

  • Try 阶段:主要尝试执行业务,执行各个服务中的 Try 方法,主要包括预留操作;
  • Confirm 阶段:确认 Try 中的各个方法执行成功,然后通过 TM 调用各个服务的 Confirm 方法,这个阶段是提交阶段;
  • Cancel 阶段:当在 Try 阶段发现其中一个 Try 方法失败,例如预留资源失败、代码异常等,则会触发 TM 调用各个服务的 Cancel 方法,对全局事务进行回滚,取消执行业务。

以上执行只是保证 Try 阶段执行时成功或失败的提交和回滚操作,你肯定会想到,如果在 Confirm 和 Cancel 阶段出现异常情况,那 TCC 该如何处理呢?此时 TCC 会不停地重试调用失败的 Confirm 或 Cancel 方法,直到成功为止。

但 TCC 补偿性事务也有比较明显的缺点,那就是对业务的侵入性非常大。

首先,我们需要在业务设计的时候考虑预留资源;然后,我们需要编写大量非业务性代码,例如 Try、Confirm、Cancel 方法;最后,我们还需要为每个方法考虑幂等性。这种事务的实现和维护成本非常高,但综合来看,这种实现是目前大家最常用的分布式事务解决方案。

4.业务无侵入方案——Seata(Fescar)

Seata 是阿里去年开源的一套分布式事务解决方案,开源一年多已经有一万多 star 了,可见受欢迎程度非常之高。

Seata 的基础建模和 DTP 模型类似,只不过前者是将事务管理器分得更细了,抽出一个事务协调器(Transaction Coordinator 简称 TC),主要维护全局事务的运行状态,负责协调并驱动全局事务的提交或回滚。而 TM 则负责开启一个全局事务,并最终发起全局提交或全局回滚的决议。如下图所示:

java 分布式系统 事务 java分布式事务锁_Redis 实现分布式锁_09

按照Github中的说明介绍,整个事务流程为:

  1. TM 向 TC 申请开启一个全局事务,全局事务创建成功并生成一个全局唯一的 XID;
  2. XID 在微服务调用链路的上下文中传播;
  3. RM 向 TC 注册分支事务,将其纳入 XID 对应全局事务的管辖;
  4. TM 向 TC 发起针对 XID 的全局提交或回滚决议;
  5. TC 调度 XID 下管辖的全部分支事务完成提交或回滚请求。

Seata 与其它分布式最大的区别在于,它在第一提交阶段就已经将各个事务操作 commit 了。Seata 认为在一个正常的业务下,各个服务提交事务的大概率是成功的,这种事务提交操作可以节约两个阶段持有锁的时间,从而提高整体的执行效率。

那如果在第一阶段就已经提交了事务,那我们还谈何回滚呢?

Seata 将 RM 提升到了服务层,通过 JDBC 数据源代理解析 SQL,把业务数据在更新前后的数据镜像组织成回滚日志,利用本地事务的 ACID 特性,将业务数据的更新和回滚日志的写入在同一个本地事务中提交。

如果 RM 决议要全局回滚,会通知 RM 进行回滚操作,通过 XID 找到对应的回滚日志记录,通过回滚记录生成反向更新 SQL,进行更新回滚操作

以上我们可以保证一个事务的原子性和一致性,但隔离性如何保证呢?

Seata 设计通过事务协调器维护的全局写排它锁,来保证事务间的写隔离,而读写隔离级别则默认为未提交读的隔离级别。

总结

在同服务多数据源操作不同数据库的情况下,我们可以使用基于 XA 规范实现的分布式事务,在 Spring 中有成熟的 JTA 框架实现了 XA 规范的二阶事务提交。事实上,二阶事务除了性能方面存在严重的阻塞问题之外,还有可能导致数据不一致,我们应该慎重考虑使用这种二阶事务提交。

在跨服务的分布式事务下,我们可以考虑基于 TCC 实现的分布式事务,常用的中间件有TCC-Transaction。TCC 也是基于二阶事务提交原理实现的,但 TCC 的二阶事务提交是提到了服务层实现。TCC 方式虽然提高了分布式事务的整体性能,但也给业务层带来了非常大的工作量,对应用服务的侵入性非常强,但这是大多数公司目前所采用的分布式事务解决方案。

Seata 是一种高效的分布式事务解决方案,设计初衷就是解决分布式带来的性能问题以及侵入性问题。但目前 Seata 的稳定性有待验证,例如,在 TC 通知 RM 开始提交事务后,TC 与 RM 的连接断开了,或者 RM 与数据库的连接断开了,都不能保证事务的一致性。