ArrayList源码解析

  • ArrayList是什么?
  • 继承结构
  • 构造函数
  • 扩容
  • 获取大小和判空
  • 截断
  • 克隆
  • 转为数组
  • 是否包含元素和获取下标
  • 操作集合
  • 获取元素
  • 设置元素
  • 添加元素
  • 添加集合
  • 删除单个元素
  • 删除范围元素
  • 求差集和交集
  • 全清
  • 序列化和反序列化
  • 获取迭代器
  • 迭代器——Itr内部类
  • 迭代器——ListItr内部类
  • 获取子串
  • 字串——SubList类(以下是类介绍)
  • 继承结构
  • 构造函数
  • 设置元素
  • 获取元素
  • 获取大小
  • 添加元素
  • 删除元素
  • 获取迭代器
  • 获取子串的子串
  • 子串spliterator(子串没有重写forEach,不讲)
  • Java8新方法(不讲)
  • forEach()
  • ArrayListSpliterator()和ArrayListSpliterator类


ArrayList是什么?

ArrayList是基于数组实现的随机访问的List结构,在添加或删除元素时会自动调节ArrayList容量

当需要随机访问,且元素不需要在列表中间进行大量增删操作时,就应该使用ArrayList

继承结构

继承了AbstractList,实现了List,并实现了三个标记接口RandomAccess、Cloneable、Serializable

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable{

}

序列版本号、初始容量、0元素空实例数组缓冲、初始容量空实例数组缓冲、最终数组、实际容量,还有从父类继承的modCount

private static final long serialVersionUID = 8683452581122892189L;
private static final int DEFAULT_CAPACITY = 10;
private static final Object[] EMPTY_ELEMENTDATA = {};
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
transient Object[] elementData;
private int size;

构造函数

  • ArrayList()让elementData指向DEFAULTCAPACITY_EMPTY_ELEMENTDATA

ArrayList(int)判断initialCapacity,具体为

  • 大于0,elementData指向新数组
  • 等于0,elementData指向EMPTY_ELEMENTDATA
  • 小于0,抛异常
public ArrayList() {
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
public ArrayList(int initialCapacity) {
    if (initialCapacity > 0) {
        this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
        this.elementData = EMPTY_ELEMENTDATA;
    } else {
        throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);
    }
}

public ArrayList(Collection<? extends E> c) {
    elementData = c.toArray();
    if ((size = elementData.length) != 0) {
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    } else {
        this.elementData = EMPTY_ELEMENTDATA;
    }
}

ArrayList(Collection)让elementData指向集合转换的数组,让size= elementData.length,判断size

  • 不等于0,再判断当前类是否是Object[] (子类可能复写了toArray方法),若不是则转换
  • 等于0,elementData指向EMPTY_ELEMENTDATA

扩容

ensureCapacity()供外部扩容,判断elementData是否指向DEFAULTCAPACITY_EMPTY_ELEMENTDATA

  • 否,说明不是通过ArrayList()创建,则可能指向EMPTY_ELEMENTDATA或新数组,大于0即扩容
  • 是,说明通过ArrayList()创建,其默认大小为10,大于10即扩容

ensureExplicitCapacity()中增加修改次数,判断扩容大小是否大于当前数组大小,大于则调用grow

grow()方法具体为

  • 将旧容量按照 oldCapacity + (oldCapacity >> 1) 扩容
  • 若新容量小于minCapacity,则新容量为minCapacity
  • 若新容量(或minCapacity大于)大于MAX_ARRAY_SIZE,则新容量为hugeCapacity()
  • 最后将elementData扩容到新容量

hugeCapacity()具体为

  • 判断是否溢出(add方法会传递size+1,若此时size已是Integer.MAX_VALUE则会溢出)
  • 若minCapacity > MAX_ARRAY_SIZE,新容量为Integer.MAX_VALUE,否则为MAX_ARRAY_SIZE
public void ensureCapacity(int minCapacity) {
    int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) ?  0 : DEFAULT_CAPACITY;
    if (minCapacity > minExpand) {
        ensureExplicitCapacity(minCapacity);
    }
}
private void ensureExplicitCapacity(int minCapacity) {
    modCount++;
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
    int oldCapacity = elementData.length;
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    elementData = Arrays.copyOf(elementData, newCapacity);
}

private static int hugeCapacity(int minCapacity) {
    if (minCapacity < 0) // overflow
        throw new OutOfMemoryError();
    return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;
}

获取大小和判空

这里返回的是域size,而不是elementData.length(size是实际元素数量,elementData.length是存放元素数组容量)

public int size() {
    return size;
}

public boolean isEmpty() {
    return size == 0;
}

截断

修改操作次数,将大小截取到size(为0指向EMPTY_ELEMENTDATA),节约空间

public void trimToSize() {
    modCount++;
    if (size < elementData.length) {
        elementData = (size == 0) ? EMPTY_ELEMENTDATA  : Arrays.copyOf(elementData, size);
    }
}

克隆

clone只是浅拷贝,只拷贝了数组地址,未拷贝里面的元素,即新旧数组会互相影响

public Object clone() {
    try {
        ArrayList<?> v = (ArrayList<?>) super.clone();
        v.elementData = Arrays.copyOf(elementData, size);
        v.modCount = 0;
        return v;
    } catch (CloneNotSupportedException e) {
        throw new InternalError(e);
    }
}

转为数组

  • toArray()调用Arrays.copyOf将elementData缩减返回

toArray(T)具体为

  • 若a.length < size,则将elementData缩减并转为T[]类型返回
  • 若a.length = size,则将elementData从0开始拷贝size个元素到a,返回a
  • 若a.length > size,则将elementData从0开始拷贝size个元素到a,a[size]=null,返回a(null后面可能还有元素
public Object[] toArray() {
    return Arrays.copyOf(elementData, size);
}

public <T> T[] toArray(T[] a) {
    if (a.length < size)
        return (T[]) Arrays.copyOf(elementData, size, a.getClass());
    System.arraycopy(elementData, 0, a, 0, size);
    if (a.length > size)
        a[size] = null;
    return a;
}

是否包含元素和获取下标

  • contains判断下标是否大于0
  • indexOf从头遍历判断元素是否存在,若存在返回下标,不存在返回-1
  • lastIndexOf从尾遍历判断元素是否存在,若存在返回下标,不存在返回-1
public boolean contains(Object o) {
    return indexOf(o) >= 0;
}

public int indexOf(Object o) {
    if (o == null) {
        for (int i = 0; i < size; i++)
            if (elementData[i]==null)
                return i;
    } else {
        for (int i = 0; i < size; i++)
            if (o.equals(elementData[i]))
                return i;
    }
    return -1;
}

public int lastIndexOf(Object o) {
    if (o == null) {
        for (int i = size-1; i >= 0; i--)
            if (elementData[i]==null)
                return i;
    } else {
        for (int i = size-1; i >= 0; i--)
            if (o.equals(elementData[i]))
                return i;
    }
    return -1;
}

操作集合

获取元素

判断是否越界,根据index从数组取出数据并转换类型

  • 这里的越界是超出size而不是elementData.length(size < elementData.length)
  • 不判断index < 0是因为 elementData[-1]本身就会报错
public E get(int index) {
    if (index >= size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    return (E) elementData[index];
}

设置元素

判断是否越界,向对应index设置新元素,取出旧元素返回

  • 这里的越界是超出size而不是elementData.length(size < elementData.length)
  • 不判断index < 0是因为 elementData[-1]本身就会报错
public E set(int index, E element) {
    if (index >= size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index))
    E oldValue = (E) elementData[index];
    elementData[index] = element;
    return oldValue;
}

添加元素

  • add(int)调用ensureCapacityInternal,随后将e设置到size++位置

ensureCapacityInternal()供内部扩容,判断elementData是否指向DEFAULTCAPACITY_EMPTY_ELEMENTDATA

  • 否,说明不是通过ArrayList()创建,则可能指向EMPTY_ELEMENTDATA或新数组,当size+1到末尾时(0或initialCapacity或c.toArray().length)扩容
  • 是,说明通过ArrayList()创建,第一次add()时size+1 = 1 < 10,而10 > elementData.length=0,初始容量为10,但size=1,当size+1到末尾时(10)再次扩容,下一次容量为15
public boolean add(E e) {
    ensureCapacityInternal(size + 1); 
    elementData[size++] = e;
    return true;
}
private void ensureCapacityInternal(int minCapacity) {
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    ensureExplicitCapacity(minCapacity);
}
public void add(int index, E element) {
    if (index > size || index < 0)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    ensureCapacityInternal(size + 1);  
    System.arraycopy(elementData, index, elementData, index + 1, size - index);
    elementData[index] = element;
    size++;
}

add(int, E)具体为

  • 判断是否溢出(index = size添加末尾,这里判断index < 0保持原子性,避免扩容后再报错导致数据不一致
  • 判断是否扩容和增加修改记录
  • System.arraycopy让index后面的元素往后移,空出index
  • 在index处赋值,并size++

添加集合

addAll(Collection)将集合转为数组a

  • 判断是否扩容和增加修改记录
  • 将a从0开始赋值a.length个元素到elementData[size]后面
  • size+a.length
  • 集合不为空则返回true
public boolean addAll(Collection<? extends E> c) {
    Object[] a = c.toArray();
    int numNew = a.length;
    ensureCapacityInternal(size + numNew); 
    System.arraycopy(a, 0, elementData, size, numNew);
    size += numNew;
    return numNew != 0;
}


public boolean addAll(int index, Collection<? extends E> c) {
    if (index > size || index < 0)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    Object[] a = c.toArray();
    int numNew = a.length;
    ensureCapacityInternal(size + numNew); 
    int numMoved = size - index;
    if (numMoved > 0)
        System.arraycopy(elementData, index, elementData, index + numNew,numMoved);
    System.arraycopy(a, 0, elementData, index, numNew);
    size += numNew;
    return numNew != 0;
}

addAll(int, Collection)将集合转为数组a添加到指定位置

  • 判断是否溢出(index = size添加末尾,这里判断index < 0保持原子性,避免扩容后再报错导致数据不一致
  • 判断是否扩容和增加修改记录
  • 获取index后面元素的个数,若个数大于0(不大于0刚好是最后一个)则后面移动numMoved个位置,空出a.length个位置
  • 将数组a填充到index位置
  • size+a.length
  • 集合不为空则返回true

删除单个元素

remove(int)具体为

  • 判断是否溢出(不判断index < 0是因为 elementData[-1]本身就会报错
  • 增加修改次数(为什么不让modCount++位于elementData[index]后面保持原子性?)
  • 取出旧元素返回
  • 获取index后面元素的个数,若个数大于0(不大于0刚好是最后一个)则后面的依次往前覆盖
  • size–,将最后一个元素置为null
public E remove(int index) {
    if (index >= size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    modCount++;
    E oldValue = (E) elementData[index];
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,numMoved);
    elementData[--size] = null; 
    return oldValue;
}

public boolean remove(Object o) {
    if (o == null) {
        for (int index = 0; index < size; index++)
            if (elementData[index] == null) {
                fastRemove(index);
                return true;
            }
    } else {
        for (int index = 0; index < size; index++)
            if (o.equals(elementData[index])) {
                fastRemove(index);
                return true;
            }
    }
    return false;
}
private void fastRemove(int index) {
    modCount++;
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,numMoved);
    elementData[--size] = null; 
}
  • remove(Object)循环遍历找到元素下标,调用fastRemove
  • fastRemove()增加修改次数,获取index后面元素的个数,若个数大于0(不大于0刚好是最后一个)则后面的依次往前覆盖,size–,将最后一个元素置为null

删除范围元素

  • 判断toIndex < fromIndex,其他判断fromIndex < 0、fromIndex >= size()、toIndex > size()交给arraycopy
  • 增加修改次数
  • 获取toIndex后面元素的个数,将toIndex后面的元素覆盖到fromIndex
  • 获取新数组大小
  • 将新数组后面的元素置null
protected void removeRange(int fromIndex, int toIndex) {
    if (toIndex < fromIndex) {
        throw new IndexOutOfBoundsException("toIndex < fromIndex");
    }
    modCount++;
    int numMoved = size - toIndex;
    System.arraycopy(elementData, toIndex, elementData, fromIndex,numMoved);
    int newSize = size - (toIndex-fromIndex);
    for (int i = newSize; i < size; i++) {
        elementData[i] = null;
    }
    size = newSize;
}

求差集和交集

求差集(complement=false)具体为

  • 若elementData[r])在集合c中不存在,则将elementData[r]保存到 elementData[w++]位置(即覆盖前面存在的元素
  • 若c.contains()抛异常(c可能是Collection子类并复写了contains方法,故可能异常)则将r后续元素拼接到w后,让w加上后续元素数量
  • 若遍历完后若w != size(只有元素全部不相等才可能w==size)则将w后面置null,记录置空次数,w为新size,返回true
public boolean removeAll(Collection<?> c) {
    Objects.requireNonNull(c);
    return batchRemove(c, false);
}
public boolean retainAll(Collection<?> c) {
    Objects.requireNonNull(c);
    return batchRemove(c, true);
}
private boolean batchRemove(Collection<?> c, boolean complement) {
    final Object[] elementData = this.elementData;
    int r = 0, w = 0;
    boolean modified = false;
    try {
        for (; r < size; r++)
            if (c.contains(elementData[r]) == complement)
                elementData[w++] = elementData[r];
    } finally {
        if (r != size) {
            System.arraycopy(elementData, r,elementData, w,size - r);
            w += size - r;
        }
        if (w != size) {
            for (int i = w; i < size; i++)
                elementData[i] = null;
            modCount += size - w;
            size = w;
            modified = true;
        }
    }
    return modified;
}

求交集(complement=true)具体为

  • 若elementData[r])在集合c中存在,则将elementData[r]保存到 elementData[w++]位置(即覆盖前面不存在的元素
  • 若c.contains()抛异常(c可能是Collection子类并复写了contains方法,故可能异常)则将r后续元素拼接到w后,让w加上r后续元素的数量
  • 若遍历完后若w != size(只有元素全部相等才可能w==size)则将w后面置null,记录置空次数,w为新size,返回true

全清

增加修改次数,遍历将元素置为null,size为0

public void clear() {
    modCount++;
    for (int i = 0; i < size; i++)
        elementData[i] = null;
    size = 0;
}

序列化和反序列化

  • writeObject将当前对象、size和元素写到ObjectOutputStream
  • readObject则将当前对象、size和元素读到ObjectInputStream
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{
    int expectedModCount = modCount;
    s.defaultWriteObject();
    s.writeInt(size);
    for (int i=0; i<size; i++) {
        s.writeObject(elementData[i]);
    }
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
}

private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
    elementData = EMPTY_ELEMENTDATA;
    s.defaultReadObject();
    s.readInt(); 
    if (size > 0) {
        ensureCapacityInternal(size);
        Object[] a = elementData;
        for (int i=0; i<size; i++) {
            a[i] = s.readObject();
        }
    }
}

获取迭代器

  • iterator()返回从实现Iterator的迭代器Itr
  • listIterator()返回实现ListIterator且位置为0的迭代器ListItr
  • listIterator(final int index)返回指定位置的迭代器ListItr
public Iterator<E> iterator() {
    return new Itr();
}
public ListIterator<E> listIterator() {
    return new ListItr(0);
}
public ListIterator<E> listIterator(int index) {
    if (index < 0 || index > size)
        throw new IndexOutOfBoundsException("Index: "+index);
    return new ListItr(index);
}

迭代器——Itr内部类

  • 域limit存储size,避免在迭代过程中并发修改从而改变size导致hasNext()的值不确定(andoird代码)
  • hasNext()判断游标是否小于limit
  • forEachRemaining()不讲

next()可连续调用,调用前可不用hasNext(),具体为

  • 先判断集合是否已被并发修改
  • 再判断游标是否已到元素末尾(避免连续调用next)
  • 再判断是否已到数组末尾(避免elementData被并发缩减)
  • 根据游标取出元素(用i保持原子性,避免cursor被修改
  • 将游标加1,记录越过的元素位置
private class Itr implements Iterator<E> {

    protected int limit = ArrayList.this.size;
    int cursor;   
    int lastRet = -1; 
    int expectedModCount = modCount;
    
    public boolean hasNext() {
        return cursor < limit;
    }
    public E next() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        int i = cursor;
        if (i >= limit)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i + 1;
        return (E) elementData[lastRet = i];
    }
    public void forEachRemaining(Consumer<? super E> consumer) {
        Objects.requireNonNull(consumer);
        final int size = ArrayList.this.size;
        int i = cursor;
        if (i >= size) {
            return;
        }
        final Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length) {
            throw new ConcurrentModificationException();
        }
        while (i != size && modCount == expectedModCount) {
            consumer.accept((E) elementData[i++]);
        }
        cursor = i;
        lastRet = i - 1;
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
    }
    public void remove() {
        if (lastRet < 0)
            throw new IllegalStateException();
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        try {
            ArrayList.this.remove(lastRet);
            cursor = lastRet;
            lastRet = -1;
            expectedModCount = modCount;
            limit--;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }
}

remove()具体为

  • 先判断是否调用了next()
  • 再判断是否已被并发修改
  • 调用外部类的remove()移除上一个越过的元素(remove报错则一定发生了并发修改
  • 删除后数组移动,游标回退到所移动元素的左边
  • lastRet = -1避免连续调用remove()
  • 记录修改次数,大小减1

迭代器——ListItr内部类

ListItr 继承了 Itr(向后遍历) 且实现了 ListIterator(向前遍历)

  • 构造函数获取指定位置的迭代器(从头开始则为0)
  • hasPrevious()判断当前是否到了位置0
  • nextIndex()和previousIndex()返回当前游标和上一个游标

previous()具体为

  • 先判断集合是否已被并发修改
  • 再判断是否到元素开头(避免连续调用previous)
  • 再判断是否已到数组末尾(避免elementData被并发缩减)
  • 根据游标取出元素(用i保持原子性,避免cursor被修改
  • 将游标减1,记录越过的元素位置
private class ListItr extends Itr implements ListIterator<E> {
    ListItr(int index) {
        super();
        cursor = index;
    }
    public boolean hasPrevious() {
        return cursor != 0;
    }
    public int nextIndex() {
        return cursor;
    }
    public int previousIndex() {
        return cursor - 1;
    }

    public E previous() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        int i = cursor - 1;
        if (i < 0)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i;
        return (E) elementData[lastRet = i];
    }
    public void set(E e) {
        if (lastRet < 0)
            throw new IllegalStateException();
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        try {
            ArrayList.this.set(lastRet, e);
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }
    public void add(E e) {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        try {
            int i = cursor;
            ArrayList.this.add(i, e);
            cursor = i + 1;
            lastRet = -1;
            expectedModCount = modCount;
            limit++;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }
}

set()具体为

  • 先判断是否调用了next()或previous()
  • 再判断是否已被并发修改
  • 调用外部类的set覆盖上一个越过的元素(set报错则一定发生了并发修改
  • (未lastRet = -1,说明可重复set,覆盖上一个)
  • 记录修改次数

add()具体为

  • 先判断是否已被并发修改
  • 用外部类的add()在游标处添加元素(用i保持原子性,避免add时cursor被修改,数组越界说明集合被并发缩减
  • lastRet = -1避免调用set()、remove(),但可连续调用add()
  • 游标加1,记录修改次数,大小加1

获取子串

subList判断传入范围是否合法,随后创建SubList返回

public List<E> subList(int fromIndex, int toIndex) {
    subListRangeCheck(fromIndex, toIndex, size);
    return new SubList(this, 0, fromIndex, toIndex);
}
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
    if (fromIndex < 0)
        throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
    if (toIndex > size)
        throw new IndexOutOfBoundsException("toIndex = " + toIndex);
    if (fromIndex > toIndex)
        throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
}

字串——SubList类(以下是类介绍)

继承结构

采用组合模式继承AbstractList,RandomAccess的子串也是RandomAccess

private class SubList extends AbstractList<E> implements RandomAccess {

}

parent指向父串,parentOffset为父串开始截取的index,offset为两个index之差,此外还有一个从父串继承的modCount

private final AbstractList<E> parent;
private final int parentOffset;
private final int offset;
int size;

构造函数

在subList()已经对index判断了,这里不再需要判断

SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) {
    this.parent = parent;
    this.parentOffset = fromIndex;
    this.offset = offset + fromIndex;
    this.size = toIndex - fromIndex;
    this.modCount = ArrayList.this.modCount;
}

设置元素

判断下标是否合法,判断是否并发修改,后给ArrayList的elementData赋值(加上子串的偏移量),返回旧元素

public E set(int index, E e) {
    if (index < 0 || index >= this.size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    E oldValue = (E) ArrayList.this.elementData[offset + index];
    ArrayList.this.elementData[offset + index] = e;
    return oldValue;
}

获取元素

判断下标是否合法,判断是否并发修改,后从ArrayList的elementData取值(加上子串的偏移量

public E get(int index) {
    if (index < 0 || index >= this.size)
      throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    return (E) ArrayList.this.elementData[offset + index];
}

获取大小

检查是否并发修改,后返回size(为两个index之差)

public int size() {
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    return this.size;
}

添加元素

  • add()检查是否越界、并发修改,后调用ArrayList.add方法(加上子串的偏移量),同步修改次数,size+1
  • addAll(Collection)添加集合到数组末尾
  • addAll(int, Collection)检查是否越界、c.size是否为0、并发修改,后调用ArrayList.addAll方法(加上子串的偏移量),同步修改次数,size+c.size
public void add(int index, E e) {
    if (index < 0 || index > this.size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    parent.add(parentOffset + index, e);
    this.modCount = parent.modCount;
    this.size++;
}
public boolean addAll(Collection<? extends E> c) {
    return addAll(this.size, c);
}
public boolean addAll(int index, Collection<? extends E> c) {
    if (index < 0 || index > this.size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    int cSize = c.size();
    if (cSize==0)
        return false;
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    parent.addAll(parentOffset + index, c);
    this.modCount = parent.modCount;
    this.size += cSize;
    return true;
}

删除元素

  • remove检查是否越界、并发修改,后调用ArrayList.remove方法(加上子串的偏移量),同步修改次数,size-1
  • removeRange检查并发修改,后调用ArrayList.removeRange方法(加上子串的偏移量),同步记修次数,size-(toIndex-fromIndex)
public E remove(int index) {
    if (index < 0 || index >= this.size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    E result = parent.remove(parentOffset + index);
    this.modCount = parent.modCount;
    this.size--;
    return result;
}
protected void removeRange(int fromIndex, int toIndex) {
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    parent.removeRange(parentOffset + fromIndex,parentOffset + toIndex);
    this.modCount = parent.modCount;
    this.size -= toIndex - fromIndex;
}

获取迭代器

  • iterator()调用AbstractList.ListIterator()再调用AbstractList.listIterator(0),利用多态实际调用Sublist.listIterator(0)

listIterator(int)返回指定位置的listIterator(其为SubList类的匿名内部类),下面为介绍

  • 检查并发修改和是否越界
  • hasNext()和hasPrevious()判断是否到开头末尾
  • nextIndex()和previousIndex()返回当前游标和上一个游标

next()同上面的ltr.next(),但加上了子串偏移量,可连续调用,调用前可不用hasNext(),具体为

  • 判断并发修改、是否到元素末尾(避免连续调用next)、是否到数组末尾(避免elementData被并发缩减)
  • 根据游标取出元素(用i保持原子性,避免cursor被修改),将游标加1,记录越过的元素位置

previous()同上面的ListItr.previous(),但加上了子串偏移量,可连续调用,调用前可不用hasPrevious(),具体为

  • 判断并发修改、是否到元素末尾(避免连续调用previous)、是否到数组末尾(避免elementData被并发缩减)
  • 根据游标取出元素(用i保持原子性,避免cursor被修改),将游标减1,记录越过的元素位置
public Iterator<E> iterator() {
    return listIterator();
}

public ListIterator<E> listIterator(final int index) {
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
    if (index < 0 || index > this.size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        
    final int offset = this.offset;
    
    return new ListIterator<E>() {
    
        int cursor = index;
        int lastRet = -1;
        int expectedModCount = ArrayList.this.modCount;
        
        public boolean hasNext() {
            return cursor != SubList.this.size;
        }
        public boolean hasPrevious() {
            return cursor != 0;
        }       
		public int nextIndex() {
            return cursor;
        }
        public int previousIndex() {
            return cursor - 1;
        }
		
        public E next() {
            if (expectedModCount != ArrayList.this.modCount)
                throw new ConcurrentModificationException();
            int i = cursor;
            if (i >= SubList.this.size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (offset + i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[offset + (lastRet = i)];
        }
        public E previous() {
            if (expectedModCount != ArrayList.this.modCount)
                throw new ConcurrentModificationException();
            int i = cursor - 1;
            if (i < 0)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (offset + i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[offset + (lastRet = i)];
        }

        public void forEachRemaining(Consumer<? super E> consumer) {
            Objects.requireNonNull(consumer);
            final int size = SubList.this.size;
            int i = cursor;
            if (i >= size) {
                return;
            }
            final Object[] elementData = ArrayList.this.elementData;
            if (offset + i >= elementData.length) {
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[offset + (i++)]);
            }
            lastRet = cursor = i;
            if (expectedModCount != ArrayList.this.modCount)
                throw new ConcurrentModificationException();
        }
        
        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            if (expectedModCount != ArrayList.this.modCount)
                throw new ConcurrentModificationException();
            try {
                SubList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = ArrayList.this.modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
        public void set(E e) {
            if (lastRet < 0)
                throw new IllegalStateException();
            if (expectedModCount != ArrayList.this.modCount)
                throw new ConcurrentModificationException();
            try {
                ArrayList.this.set(offset + lastRet, e);
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
        public void add(E e) {
            if (expectedModCount != ArrayList.this.modCount)
                throw new ConcurrentModificationException();
            try {
                int i = cursor;
                SubList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = ArrayList.this.modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    };
}

remove()具体为

  • 判断是否调用了next()或previous()、是否并发修改
  • 调用SubList.remove()移除上一个越过的元素(remove报错则一定发生了并发修改
  • 删除后数组移动,游标回退到所移动元素的左边,lastRet = -1避免连续调用remove(),记录修改次数

set()具体为

  • 判断是否调用了next()或previous()、是否并发修改
  • 调用SubList.set()覆盖上一个越过的元素(加上偏移量,set报错则一定发生了并发修改
  • (未lastRet = -1,说明可重复set,覆盖上一个),记录修改次数

add()具体为

  • 判断是否并发修改
  • 用外部类的add()在游标处添加元素(用i保持原子性,避免add时cursor被修改,数组越界说明集合被并发缩减
  • lastRet = -1避免调用set()、remove(),但可连续调用add(), 游标加1,记录修改次数

获取子串的子串

subList()调用自身的构造方法,将自己截断

public List<E> subList(int fromIndex, int toIndex) {
    subListRangeCheck(fromIndex, toIndex, size);
    return new SubList(this, offset, fromIndex, toIndex);
}

——————————————————————————

子串spliterator(子串没有重写forEach,不讲)

public Spliterator<E> spliterator() {
    if (modCount != ArrayList.this.modCount)
        throw new ConcurrentModificationException();
    return new ArrayListSpliterator<E>(ArrayList.this, offset,offset + this.size, this.modCount);
}

Java8新方法(不讲)

forEach()

public void forEach(Consumer<? super E> action) {
    Objects.requireNonNull(action);
    final int expectedModCount = modCount;
    final E[] elementData = (E[]) this.elementData;
    final int size = this.size;
    for (int i=0; modCount == expectedModCount && i < size; i++) {
        action.accept(elementData[i]);
    }
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
}

ArrayListSpliterator()和ArrayListSpliterator类

public Spliterator<E> spliterator() {
    return new ArrayListSpliterator<>(this, 0, -1, 0);
}

static final class ArrayListSpliterator<E> implements Spliterator<E> {
 
    private final ArrayList<E> list;
    private int index; 
    private int fence; 
    private int expectedModCount; 
    ArrayListSpliterator(ArrayList<E> list, int origin, int fence,int expectedModCount) {
        this.list = list;
        this.index = origin;
        this.fence = fence;
        this.expectedModCount = expectedModCount;
    }
    private int getFence() { 
        int hi; 
        ArrayList<E> lst;
        if ((hi = fence) < 0) {
            if ((lst = list) == null)
                hi = fence = 0;
            else {
                expectedModCount = lst.modCount;
                hi = fence = lst.size;
            }
        }
        return hi;
    }
    public ArrayListSpliterator<E> trySplit() {
        int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
        return (lo >= mid) ? null : 
            new ArrayListSpliterator<E>(list, lo, index = mid,expectedModCount);
    }
    public boolean tryAdvance(Consumer<? super E> action) {
        if (action == null)
            throw new NullPointerException();
        int hi = getFence(), i = index;
        if (i < hi) {
            index = i + 1;
            E e = (E)list.elementData[i];
            action.accept(e);
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return true;
        }
        return false;
    }
    public void forEachRemaining(Consumer<? super E> action) {
        int i, hi, mc; 
        ArrayList<E> lst; Object[] a;
        if (action == null)
            throw new NullPointerException();
        if ((lst = list) != null && (a = lst.elementData) != null) {
            if ((hi = fence) < 0) {
                mc = lst.modCount;
                hi = lst.size;
            }
            else
                mc = expectedModCount;
            if ((i = index) >= 0 && (index = hi) <= a.length) {
                for (; i < hi; ++i) {
                    @SuppressWarnings("unchecked") E e = (E) a[i];
                    action.accept(e);
                }
                if (lst.modCount == mc)
                    return;
            }
        }
        throw new ConcurrentModificationException();
    }
    public long estimateSize() {
        return (long) (getFence() - index);
    }
    public int characteristics() {
        return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBS
    }
}
@Override
public boolean removeIf(Predicate<? super E> filter) {
    Objects.requireNonNull(filter);
    int removeCount = 0;
    final BitSet removeSet = new BitSet(size);
    final int expectedModCount = modCount;
    final int size = this.size;
    for (int i=0; modCount == expectedModCount && i < size; i++) {
        final E element = (E) elementData[i];
        if (filter.test(element)) {
            removeSet.set(i);
            removeCount++;
        }
    }
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
    final boolean anyToRemove = removeCount > 0;
    if (anyToRemove) {
        final int newSize = size - removeCount;
        for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
            i = removeSet.nextClearBit(i);
            elementData[j] = elementData[i];
        }
        for (int k=newSize; k < size; k++) {
            elementData[k] = null; 
        }
        this.size = newSize;
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
    return anyToRemove;
}

public void replaceAll(UnaryOperator<E> operator) {
    Objects.requireNonNull(operator);
    final int expectedModCount = modCount;
    final int size = this.size;
    for (int i=0; modCount == expectedModCount && i < size; i++) {
        elementData[i] = operator.apply((E) elementData[i]);
    }
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
    modCount++;
}

public void sort(Comparator<? super E> c) {
    final int expectedModCount = modCount;
    Arrays.sort((E[]) elementData, 0, size, c);
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
    modCount++;
}