题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
先分析思路,再看实现。
首先解决前提性的问题:一个骰子的点数只可能是[1,6],所以S的值的取值范围是[n,6n],这里当然只考虑整数。
思路一:统计各个S值出现的次数,然后
各个S值出现的概率 = 各个S值出现的次数 / n个骰子所有点数的排列数
其中,n个骰子所有点数的排列数等于6n,而各个S值出现的次数就需要建立一个数组来进行统计。这时,问题就变成怎样来求各个S出现的次数了。方法我直接引用原文的文字如下:
========================== 以下文字引用自原文 ============================
分析:玩过麻将的都知道,骰子一共6个面,每个面上都有一个点数,对应的数字是1到 6之间的一个数字。所以,n个骰子的点数和的最小值为n,最大值为6n。因此,一个直观的思路就是定义一个长度为6n-n的数组,和为S的点数出现的次数保存到数组第S-n个元素里。另外,我们还知道n个骰子的所有点数的排列数6^n。一旦我们统计出每一点数出现的次数之后,因此只要把每一点数出现的次数除以6^n,就得到了对应的概率。
该思路的关键就是统计每一点数出现的次数。要求出n个骰子的点数和,我们可以先把n个骰子分为两堆:第一堆只有一个,另一个有n-1个。单独的那一个有可能出现从1到6的点数。我们需要计算从1到6的每一种点数和剩下的n-1个骰子来计算点数和。接下来把剩下的n-1个骰子还是分成两堆,第一堆只有一个,第二堆有n-2个。我们把上一轮那个单独骰子的点数和这一轮单独骰子的点数相加,再和剩下的n-2个骰子来计算点数和。分析到这里,我们不难发现,这是一种递归的思路。递归结束的条件就是最后只剩下一个骰子了。
========================== 以上文字引用自原文 ============================