Description
Read the statement of problem G for the definitions concerning trees. In the following we define the basic terminology of heaps. A heap is a tree whose internal nodes have each assigned a priority (a number) such that the priority of each internal node is less than the priority of its parent. As a consequence, the root has the greatest priority in the tree, which is one of the reasons why heaps can be used for the implementation of priority queues and for sorting.
A binary tree in which each internal node has both a label and a priority, and which is both a binary search tree with respect to the labels and a heap with respect to the priorities, is called a treap. Your task is, given a set of label-priority-pairs, with unique labels and unique priorities, to construct a treap containing this data.Input
The input contains several test cases. Every test case starts with an integer n. You may assume that 1<=n<=50000. Then follow n pairs of strings and numbers l1/p1,...,ln/pn denoting the label and priority of each node. The strings are non-empty and composed of lower-case letters, and the numbers are non-negative integers. The last test case is followed by a zero.
Output
For each test case output on a single line a treap that contains the specified nodes. A treap is printed as (< left sub-treap >< label >/< priority >< right sub-treap >). The sub-treaps are printed recursively, and omitted if leafs.
Sample Input
7 a/7 b/6 c/5 d/4 e/3 f/2 g/1 7 a/1 b/2 c/3 d/4 e/5 f/6 g/7 7 a/3 b/6 c/4 d/7 e/2 f/5 g/1 0
Sample Output
(a/7(b/6(c/5(d/4(e/3(f/2(g/1))))))) (((((((a/1)b/2)c/3)d/4)e/5)f/6)g/7) (((a/3)b/6(c/4))d/7((e/2)f/5(g/1)))
建立一颗树,每个结点有两个关键字,要求第一个关键字满足二叉搜索树的性质,第二个结点满足堆的性质
首先,要把所有结点按照第一个关键字按非递减排序,这样之后,每个结点左边的结点都比该结点的第一个关键字小,右边的则第一个关键字都比他大。这样的话按顺序每次插入右子树,因为要满足二叉搜索树的性质, 插入之后不能满足堆的性质时就左旋。
由于每个节点两种属性v值和优先级r,先读入所有的节点信息,然后将所有节点按第一关键字排序。然后我们递归处理[1,n]区间内的信息,用RMQ先找出[1,n]内的最大r值的节点mid,并输出信息,然后递归处理左边的区间[1,mid-1]和右边的区间[mid+1,n]即可.
AC代码: