一、该类的定义

public class LongAdder extends Striped64 implements Serializable {
private static final long serialVersionUID = 7249069246863182397L;
public LongAdder() {
}

从上面的LongAdder 的定义结构看该类实现了Striped64 抽象类。那么它具体有哪些方法呢?下面来看下图:

JDK8之LongAdder详解_java

从这些方法中我们看到LongAdder中没有类似于AtomicLong中getAndIncrement()或者incrementAndGet()这样的原子操作。那么它又是怎样保证原子性及并发操作的呢?

二、方法详解

Striped64类内部重要的成员变量:

//用于存放cell的hash表,大小是2的幂次方
transient volatile Cell[] cells;

//基础值
//1. 在没有竞争时会更新这个值;
//2. 在cells初始化的过程中,cells处于不可用的状态,这时候也会尝试将通过cas操作值累加到base。
transient volatile long base;
//自旋锁,通过CAS操作加锁,用于保护创建或者扩展Cell表。
transient volatile int cellsBusy;

成员变量cells

cells数组是LongAdder高性能实现的必杀器: 

AtomicInteger只有一个value,所有线程累加都要通过cas竞争value这一个变量,高并发下线程争用非常严重; 

而LongAdder则有两个值用于累加,一个是base,它的作用类似于AtomicInteger里面的value,在没有竞争的情况不会用到cells数组,它为null,这时使用base做累加,有了竞争后cells数组就上场了,第一次初始化长度为2,以后每次扩容都是变为原来的两倍,直到cells数组的长度大于等于当前服务器cpu的数量为止就不在扩容;每个线程会通过线程对cells[threadLocalRandomProbe%cells.length]位置的Cell对象中的value做累加,这样相当于将线程绑定到了cells中的某个cell对象上;

成员变量cellsBusy

cellsBusy,它有两个值0 或1,它的作用是当要修改cells数组时加锁,防止多线程同时修改cells数组,0为无锁,1为加锁,加锁的状况有三种 

1. cells数组初始化的时候; 

2. cells数组扩容的时候; 

3. 如果cells数组中某个元素为null,给这个位置创建新的Cell对象的时候;

成员变量base

它有两个作用: 

1. 在开始没有竞争的情况下,将累加值累加到base 

2. 在cells初始化的过程中,cells不可用,这时会尝试将值累加到base上;

add方法详解:

public void add(long x) {
Cell[] as; long b, v; int m; Cell a;
/**
* 1. cells数组不为null(不存在争用的时候,cells数组一定为null,一旦对base的cas操作失败,才会初始化cells数组)
* 2. 如果cells数组为null,如果casBase执行成功,则直接返回,如果casBase方法执行失败(casBase失败,说明第一次争用冲突产生,需要对cells数组初始化)进入if内;
* casBase方法很简单,就是通过UNSAFE类的cas设置成员变量base的值为base+要累加的值
* casBase执行成功的前提是无竞争,这时候cells数组还没有用到为null,可见在无竞争的情况下是类似于AtomticInteger处理方式,使用cas做累加。
*/
if ((as = cells) != null || !casBase(b = base, b + x)) {
//uncontended判断cells数组中,当前线程要做cas累加操作的某个元素是否#不#存在争用,如果cas失败则存在争用;uncontended=false代表存在争用,uncontended=true代表不存在争用。

boolean uncontended = true;
/**
*1. as == null :cells数组未被初始化,成立则直接进入if执行cell初始化
*2. (m = as.length - 1) < 0:cells数组的长度为0
*条件1与2都代表cells数组没有被初始化成功,初始化成功的cells数组长度为2;
*3. (a = as[getProbe() & m]) == null :如果cells被初始化,且它的长度不为0,则通过getProbe方法获取当前线程Thread的threadLocalRandomProbe变量的值,初始为0,然后执行threadLocalRandomProbe&(cells.length-1 ),相当于m%cells.length;如果cells[threadLocalRandomProbe%cells.length]的位置为null,这说明这个位置从来没有线程做过累加,需要进入if继续执行,在这个位置创建一个新的Cell对象;
*4. !(uncontended = a.cas(v = a.value, v + x)):尝试对cells[threadLocalRandomProbe%cells.length]位置的Cell对象中的value值做累加操作,并返回操作结果,如果失败了则进入if,重新计算一个threadLocalRandomProbe;
如果进入if语句执行longAccumulate方法,有三种情况
1. 前两个条件代表cells没有初始化,
2. 第三个条件指当前线程hash到的cells数组中的位置还没有其它线程做过累加操作,
3. 第四个条件代表产生了冲突,uncontended=false
**/
if (as == null || (m = as.length - 1) < 0 ||
(a = as[getProbe() & m]) == null ||
!(uncontended = a.cas(v = a.value, v + x)))
longAccumulate(x, null, uncontended);
}
}

longAccumulate方法详解:

根据上面方法调用可以看出有三个参数,三个参数第一个为要累加的值,第二个为null,第三个为wasUncontended表示调用方法之前的add方法是否未发生竞争;

final void longAccumulate(long x, LongBinaryOperator fn,boolean wasUncontended) {
//获取当前线程的threadLocalRandomProbe值作为hash值,如果当前线程的threadLocalRandomProbe为0,说明当前线程是第一次进入该方法,则强制设置线程的threadLocalRandomProbe为ThreadLocalRandom类的成员静态私有变量probeGenerator的值,后面会详细说hash值的生成;
//另外需要注意,如果threadLocalRandomProbe=0,代表新的线程开始参与cell争用的情况
//1.当前线程之前还没有参与过cells争用(也许cells数组还没初始化,进到当前方法来就是为了初始化cells数组后争用的),是第一次执行base的cas累加操作失败;
//2.或者是在执行add方法时,对cells某个位置的Cell的cas操作第一次失败,则将wasUncontended设置为false,那么这里会将其重新置为true;第一次执行操作失败;
//凡是参与了cell争用操作的线程threadLocalRandomProbe都不为0;
int h;
if ((h = getProbe()) == 0) {
//初始化ThreadLocalRandom;
ThreadLocalRandom.current(); // force initialization
//将h设置为0x9e3779b9
h = getProbe();
//设置未竞争标记为true
wasUncontended = true;
}
//cas冲突标志,表示当前线程hash到的Cells数组的位置,做cas累加操作时与其它线程发生了冲突,cas失败;collide=true代表有冲突,collide=false代表无冲突
boolean collide = false;
for (;;) {
Cell[] as; Cell a; int n; long v;
//这个主干if有三个分支
//1.主分支一:处理cells数组已经正常初始化了的情况(这个if分支处理add方法的四个条件中的3和4)
//2.主分支二:处理cells数组没有初始化或者长度为0的情况;(这个分支处理add方法的四个条件中的1和2)
//3.主分支三:处理如果cell数组没有初始化,并且其它线程正在执行对cells数组初始化的操作,及cellbusy=1;则尝试将累加值通过cas累加到base上
//先看主分支一
if ((as = cells) != null && (n = as.length) > 0) {
/**
*内部小分支一:这个是处理add方法内部if分支的条件3:如果被hash到的位置为null,说明没有线程在这个位置设置过值,没有竞争,可以直接使用,则用x值作为初始值创建一个新的Cell对象,对cells数组使用cellsBusy加锁,然后将这个Cell对象放到cells[m%cells.length]位置上
*/
if ((a = as[(n - 1) & h]) == null) {
//cellsBusy == 0 代表当前没有线程cells数组做修改
if (cellsBusy == 0) {
//将要累加的x值作为初始值创建一个新的Cell对象,
Cell r = new Cell(x);
//如果cellsBusy=0无锁,则通过cas将cellsBusy设置为1加锁
if (cellsBusy == 0 && casCellsBusy()) {
//标记Cell是否创建成功并放入到cells数组被hash的位置上
boolean created = false;
try {
Cell[] rs; int m, j;
//再次检查cells数组不为null,且长度不为空,且hash到的位置的Cell为null
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
//将新的cell设置到该位置
rs[j] = r;
created = true;
}
} finally {
//去掉锁
cellsBusy = 0;
}
//生成成功,跳出循环
if (created)
break;
//如果created为false,说明上面指定的cells数组的位置cells[m%cells.length]已经有其它线程设置了cell了,继续执行循环。
continue;
}
}
//如果执行的当前行,代表cellsBusy=1,有线程正在更改cells数组,代表产生了冲突,将collide设置为false
collide = false;

/**
*内部小分支二:如果add方法中条件4的通过cas设置cells[m%cells.length]位置的Cell对象中的value值设置为v+x失败,说明已经发生竞争,将wasUncontended设置为true,跳出内部的if判断,最后重新计算一个新的probe,然后重新执行循环;
*/
} else if (!wasUncontended)
//设置未竞争标志位true,继续执行,后面会算一个新的probe值,然后重新执行循环。
wasUncontended = true;
/**
*内部小分支三:新的争用线程参与争用的情况:处理刚进入当前方法时threadLocalRandomProbe=0的情况,也就是当前线程第一次参与cell争用的cas失败,这里会尝试将x值加到cells[m%cells.length]的value ,如果成功直接退出
*/
else if (a.cas(v = a.value, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break;
/**
*内部小分支四:分支3处理新的线程争用执行失败了,这时如果cells数组的长度已经到了最大值(大于等于cup数量),或者是当前cells已经做了扩容,则将collide设置为false,后面重新计算prob的值
else if (n >= NCPU || cells != as)
collide = false;
/**
*内部小分支五:如果发生了冲突collide=false,则设置其为true;会在最后重新计算hash值后,进入下一次for循环
*/
else if (!collide)
//设置冲突标志,表示发生了冲突,需要再次生成hash,重试。如果下次重试任然走到了改分支此时collide=true,!collide条件不成立,则走后一个分支
collide = true;
/**
*内部小分支六:扩容cells数组,新参与cell争用的线程两次均失败,且符合扩容条件,会执行该分支
*/
else if (cellsBusy == 0 && casCellsBusy()) {
try {
//检查cells是否已经被扩容
if (cells == as) { // Expand table unless stale
Cell[] rs = new Cell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
cells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
//为当前线程重新计算hash值
h = advanceProbe(h);

//这个大的分支处理add方法中的条件1与条件2成立的情况,如果cell表还未初始化或者长度为0,先尝试获取cellsBusy锁。
}else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
boolean init = false;
try { // Initialize table
//初始化cells数组,初始容量为2,并将x值通过hash&1,放到0个或第1个位置上
if (cells == as) {
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(x);
cells = rs;
init = true;
}
} finally {
//解锁
cellsBusy = 0;
}
//如果init为true说明初始化成功,跳出循环
if (init)
break;
}
/**
*如果以上操作都失败了,则尝试将值累加到base上;
*/
else if (casBase(v = base, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break; // Fall back on using base
}
}

hash的生成详解:

hash是LongAdder定位当前线程应该将值累加到cells数组哪个位置上的,所以hash的算法是非常重要的,下面就来看看它的实现:

java的Thread类里面有一个成员变量

/** Probe hash value; nonzero if threadLocalRandomSeed initialized */
@sun.misc.Contended("tlr")
int threadLocalRandomProbe;

threadLocalRandomProbe这个变量的值就是LongAdder用来hash定位Cells数组位置的,平时线程的这个变量一般用不到,它的值一直都是0。

在LongAdder的父类Striped64里通过getProbe方法获取当前线程threadLocalRandomProbe的值:

/**
* PROBE是threadLocalRandomProbe变量在Thread类里面的偏移量,所以下面语句获取的就是threadLocalRandomProbe的值;
*/
static final int getProbe() {
return UNSAFE.getInt(Thread.currentThread(), PROBE);
}

threadLocalRandomProbe的初始化线程对LongAdder的累加操作,在没有进入longAccumulate方法前,threadLocalRandomProbe一直都是0,当发生争用后才会进入longAccumulate方法中。

//进入方法的第一步操作
int h;
if ((h = getProbe()) == 0) {
ThreadLocalRandom.current(); // force initialization
h = getProbe();
wasUncontended = true;
}

ThreadLocalRandom.current();方法内部实现:

/**
* Returns the current thread's {@code ThreadLocalRandom}.
*
* @return the current thread's {@code ThreadLocalRandom}
*/
public static ThreadLocalRandom current() {
if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
localInit();
return instance;
}

从该方法看出判断了probe的值是否为0,又调用了localInit()方法:

static final void localInit() {
int p = probeGenerator.addAndGet(PROBE_INCREMENT);
int probe = (p == 0) ? 1 : p; // skip 0
long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
Thread t = Thread.currentThread();
UNSAFE.putLong(t, SEED, seed);
UNSAFE.putInt(t, PROBE, probe);
}

probeGenerator是AtomicInteger类,当每次调用init方法是都将累加一次。

三、总结

LongAdder类与AtomicLong类的区别在于高并发时前者将对单一变量的CAS操作分散为对数组cells中多个元素的CAS操作,取值时进行求和;而在并发较低时仅对base变量进行CAS操作,与AtomicLong类原理相同。不得不说这种分布式的设计还是很巧妙的。