Knuth's 33 Constants to 50 Significant Digits
(verified with Mathematica 4.0 by dnw, 13Dec02)
The first row is cut and pasted from Richard P. Brent's output,
described in "Knuth's Constants to 1000 Decimal and 1100 Octal
Places", after some shuffling and adjusting for floating point
notation.
The second row is cut and pasted from Mathematica 4.0.
sqrt 2 0.14142135623730950488016887242096980785696718753769e1
1.4142135623730950488016887242096980785696718753769
sqrt 3 0.17320508075688772935274463415058723669428052538104e1
1.7320508075688772935274463415058723669428052538104
sqrt 5 0.22360679774997896964091736687312762354406183596115e1
2.2360679774997896964091736687312762354406183596115
sqrt 10 0.31622776601683793319988935444327185337195551393252e1
3.1622776601683793319988935444327185337195551393252
2^(1/3) 0.12599210498948731647672106072782283505702514647015e1
1.2599210498948731647672106072782283505702514647015
3^(1/3) 0.14422495703074083823216383107801095883918692534994e1
1.4422495703074083823216383107801095883918692534994
2^(1/4) 0.11892071150027210667174999705604759152929720924638e1
1.1892071150027210667174999705604759152929720924638
phi 0.16180339887498948482045868343656381177203091798058e1
1.6180339887498948482045868343656381177203091798058
ln 2 0.69314718055994530941723212145817656807550013436026e0
0.69314718055994530941723212145817656807550013436026
ln 3 0.10986122886681096913952452369225257046474905578227e1
1.0986122886681096913952452369225257046474905578227
ln 10 0.23025850929940456840179914546843642076011014886288e1
2.3025850929940456840179914546843642076011014886288
ln pi 0.11447298858494001741434273513530587116472948129153e1
1.1447298858494001741434273513530587116472948129153
ln phi 0.48121182505960344749775891342436842313518433438566e0
0.48121182505960344749775891342436842313518433438566
1/ln 2 0.14426950408889634073599246810018921374266459541530e1
1.4426950408889634073599246810018921374266459541530
1/ln 10 0.43429448190325182765112891891660508229439700580367e0
0.43429448190325182765112891891660508229439700580367
1/ln phi 0.20780869212350275376013226061177957677421922677833e1
2.0780869212350275376013226061177957677421922677833
pi 0.31415926535897932384626433832795028841971693993751e1
3.1415926535897932384626433832795028841971693993751
pi/180 0.17453292519943295769236907684886127134428718885417e-1
0.017453292519943295769236907684886127134428718885417
1/pi 0.31830988618379067153776752674502872406891929148091e0
0.31830988618379067153776752674502872406891929148091
pi^2 0.98696044010893586188344909998761511353136994072408e1
9.8696044010893586188344909998761511353136994072408
Gamma(1/2) 0.17724538509055160272981674833411451827975494561224e1
1.7724538509055160272981674833411451827975494561224
Gamma(1/3) 0.26789385347077476336556929409746776441286893779573e1
2.6789385347077476336556929409746776441286893779573
Gamma(2/3) 0.13541179394264004169452880281545137855193272660568e1
1.3541179394264004169452880281545137855193272660568
e 0.27182818284590452353602874713526624977572470937000e1
2.7182818284590452353602874713526624977572470937000
1/e 0.36787944117144232159552377016146086744581113103177e0
0.36787944117144232159552377016146086744581113103177
e^2 0.73890560989306502272304274605750078131803155705518e1
7.3890560989306502272304274605750078131803155705518
gamma 0.57721566490153286060651209008240243104215933593992e0
0.57721566490153286060651209008240243104215933593992
e^gamma 0.17810724179901979852365041031071795491696452143034e1
1.7810724179901979852365041031071795491696452143034
e^(pi/4) 0.21932800507380154565597696592787382234616376419943e1
2.1932800507380154565597696592787382234616376419943
sin 1 0.84147098480789650665250232163029899962256306079837e0
0.84147098480789650665250232163029899962256306079837
cos 1 0.54030230586813971740093660744297660373231042061792e0
0.54030230586813971740093660744297660373231042061792
zeta(3) 0.12020569031595942853997381615114499907649862923405e1
1.2020569031595942853997381615114499907649862923405
-ln ln 2 0.36651292058166432701243915823266946945426344783711e0
0.36651292058166432701243915823266946945426344783711
NOTES: Gamma(1/2) = sqrt pi
phi = (1+sqrt 5)/2
REFERENCES:
Donald E. Knuth, "The Art of Computer Programming".
Richard P. Brent, "Knuth's Constants to 1000 Decimal and 1100
Octal Places".
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
51c大模型~合集33大模型
-
knuth的SJT实现
SJT算法就是给每个值一个方向,初始都向左(P1),然后从最大的值
算法 子序列 全排列 初始化 -
高德纳(Donald Knuth)语录
Let us change our traditional attitude to the const
算法 python java 机器学习 c++ -
求和s= 3+33+333
s=3+33+333
#include i++ while语句