Knuth's 33 Constants to 50 Significant Digits
(verified with Mathematica 4.0 by dnw, 13Dec02)

The first row is cut and pasted from Richard P. Brent's output,
described in "Knuth's Constants to 1000 Decimal and 1100 Octal
Places", after some shuffling and adjusting for floating point
notation.

The second row is cut and pasted from Mathematica 4.0.

sqrt 2 0.14142135623730950488016887242096980785696718753769e1
1.4142135623730950488016887242096980785696718753769

sqrt 3 0.17320508075688772935274463415058723669428052538104e1
1.7320508075688772935274463415058723669428052538104

sqrt 5 0.22360679774997896964091736687312762354406183596115e1
2.2360679774997896964091736687312762354406183596115

sqrt 10 0.31622776601683793319988935444327185337195551393252e1
3.1622776601683793319988935444327185337195551393252

2^(1/3) 0.12599210498948731647672106072782283505702514647015e1
1.2599210498948731647672106072782283505702514647015

3^(1/3) 0.14422495703074083823216383107801095883918692534994e1
1.4422495703074083823216383107801095883918692534994

2^(1/4) 0.11892071150027210667174999705604759152929720924638e1
1.1892071150027210667174999705604759152929720924638

phi 0.16180339887498948482045868343656381177203091798058e1
1.6180339887498948482045868343656381177203091798058

ln 2 0.69314718055994530941723212145817656807550013436026e0
0.69314718055994530941723212145817656807550013436026

ln 3 0.10986122886681096913952452369225257046474905578227e1
1.0986122886681096913952452369225257046474905578227

ln 10 0.23025850929940456840179914546843642076011014886288e1
2.3025850929940456840179914546843642076011014886288

ln pi 0.11447298858494001741434273513530587116472948129153e1
1.1447298858494001741434273513530587116472948129153

ln phi 0.48121182505960344749775891342436842313518433438566e0
0.48121182505960344749775891342436842313518433438566

1/ln 2 0.14426950408889634073599246810018921374266459541530e1
1.4426950408889634073599246810018921374266459541530

1/ln 10 0.43429448190325182765112891891660508229439700580367e0
0.43429448190325182765112891891660508229439700580367

1/ln phi 0.20780869212350275376013226061177957677421922677833e1
2.0780869212350275376013226061177957677421922677833

pi 0.31415926535897932384626433832795028841971693993751e1
3.1415926535897932384626433832795028841971693993751

pi/180 0.17453292519943295769236907684886127134428718885417e-1
0.017453292519943295769236907684886127134428718885417

1/pi 0.31830988618379067153776752674502872406891929148091e0
0.31830988618379067153776752674502872406891929148091

pi^2 0.98696044010893586188344909998761511353136994072408e1
9.8696044010893586188344909998761511353136994072408

Gamma(1/2) 0.17724538509055160272981674833411451827975494561224e1
1.7724538509055160272981674833411451827975494561224

Gamma(1/3) 0.26789385347077476336556929409746776441286893779573e1
2.6789385347077476336556929409746776441286893779573

Gamma(2/3) 0.13541179394264004169452880281545137855193272660568e1
1.3541179394264004169452880281545137855193272660568

e 0.27182818284590452353602874713526624977572470937000e1
2.7182818284590452353602874713526624977572470937000

1/e 0.36787944117144232159552377016146086744581113103177e0
0.36787944117144232159552377016146086744581113103177

e^2 0.73890560989306502272304274605750078131803155705518e1
7.3890560989306502272304274605750078131803155705518

gamma 0.57721566490153286060651209008240243104215933593992e0
0.57721566490153286060651209008240243104215933593992

e^gamma 0.17810724179901979852365041031071795491696452143034e1
1.7810724179901979852365041031071795491696452143034

e^(pi/4) 0.21932800507380154565597696592787382234616376419943e1
2.1932800507380154565597696592787382234616376419943

sin 1 0.84147098480789650665250232163029899962256306079837e0
0.84147098480789650665250232163029899962256306079837

cos 1 0.54030230586813971740093660744297660373231042061792e0
0.54030230586813971740093660744297660373231042061792

zeta(3) 0.12020569031595942853997381615114499907649862923405e1
1.2020569031595942853997381615114499907649862923405

-ln ln 2 0.36651292058166432701243915823266946945426344783711e0
0.36651292058166432701243915823266946945426344783711

NOTES: Gamma(1/2) = sqrt pi
phi = (1+sqrt 5)/2

REFERENCES:

Donald E. Knuth, "The Art of Computer Programming".
Richard P. Brent, "Knuth's Constants to 1000 Decimal and 1100
Octal Places".