李峋爱心跳动-3D

电视剧点燃我,温暖你 打火机与公主裙 李洵爱心跳动效果
最近看剧觉得那个爱心有点厉害,逛github发现有大佬发出来了,那就~~~
代码地址:​​​https://github.com/Kaiser-DMr/-3D​​​ 在线预览:​​http://z.nmxgzs.cn​

Video

主页代码(其他依赖文件太多自己去github下载吧):

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8">
<title>爱心跳动,3D拖拽搬</title>
<link rel="stylesheet" href="./css/style.css">
</head>
<body>

<script src='./js/three.min.js'></script>
<!-- <script src='./js/MeshSurfaceSampler.js'></script> -->
<script src='./js/TrackballControls.js'></script>
<script src='./js/simplex-noise.js'></script>
<script src='./js/OBJLoader.js'></script>
<script src='./js/gsap.min.js'></script>
<script src="./js/script.js"></script>


<script>


(function () {
const _face = new THREE.Triangle();

const _color = new THREE.Vector3();

class MeshSurfaceSampler {

constructor(mesh) {

let geometry = mesh.geometry;

if (!geometry.isBufferGeometry || geometry.attributes.position.itemSize !== 3) {

throw new Error('THREE.MeshSurfaceSampler: Requires BufferGeometry triangle mesh.');

}

if (geometry.index) {

console.warn('THREE.MeshSurfaceSampler: Converting geometry to non-indexed BufferGeometry.');
geometry = geometry.toNonIndexed();

}

this.geometry = geometry;
this.randomFunction = Math.random;
this.positionAttribute = this.geometry.getAttribute('position');
this.colorAttribute = this.geometry.getAttribute('color');
this.weightAttribute = null;
this.distribution = null;

}

setWeightAttribute(name) {

this.weightAttribute = name ? this.geometry.getAttribute(name) : null;
return this;

}

build() {

const positionAttribute = this.positionAttribute;
const weightAttribute = this.weightAttribute;
const faceWeights = new Float32Array(positionAttribute.count / 3); // Accumulate weights for each mesh face.

for (let i = 0; i < positionAttribute.count; i += 3) {

let faceWeight = 1;

if (weightAttribute) {

faceWeight = weightAttribute.getX(i) + weightAttribute.getX(i + 1) + weightAttribute.getX(i + 2);

}

_face.a.fromBufferAttribute(positionAttribute, i);

_face.b.fromBufferAttribute(positionAttribute, i + 1);

_face.c.fromBufferAttribute(positionAttribute, i + 2);

faceWeight *= _face.getArea();
faceWeights[i / 3] = faceWeight;

} // Store cumulative total face weights in an array, where weight index
// corresponds to face index.


this.distribution = new Float32Array(positionAttribute.count / 3);
let cumulativeTotal = 0;

for (let i = 0; i < faceWeights.length; i++) {

cumulativeTotal += faceWeights[i];
this.distribution[i] = cumulativeTotal;

}

return this;

}

setRandomGenerator(randomFunction) {

this.randomFunction = randomFunction;
return this;

}

sample(targetPosition, targetNormal, targetColor) {

const cumulativeTotal = this.distribution[this.distribution.length - 1];
const faceIndex = this.binarySearch(this.randomFunction() * cumulativeTotal);
return this.sampleFace(faceIndex, targetPosition, targetNormal, targetColor);

}

binarySearch(x) {

const dist = this.distribution;
let start = 0;
let end = dist.length - 1;
let index = - 1;

while (start <= end) {

const mid = Math.ceil((start + end) / 2);

if (mid === 0 || dist[mid - 1] <= x && dist[mid] > x) {

index = mid;
break;

} else if (x < dist[mid]) {

end = mid - 1;

} else {

start = mid + 1;

}

}

return index;

}

sampleFace(faceIndex, targetPosition, targetNormal, targetColor) {

let u = this.randomFunction();
let v = this.randomFunction();

if (u + v > 1) {

u = 1 - u;
v = 1 - v;

}

_face.a.fromBufferAttribute(this.positionAttribute, faceIndex * 3);

_face.b.fromBufferAttribute(this.positionAttribute, faceIndex * 3 + 1);

_face.c.fromBufferAttribute(this.positionAttribute, faceIndex * 3 + 2);

targetPosition.set(0, 0, 0).addScaledVector(_face.a, u).addScaledVector(_face.b, v).addScaledVector(_face.c, 1 - (u + v));

if (targetNormal !== undefined) {

_face.getNormal(targetNormal);

}

if (targetColor !== undefined && this.colorAttribute !== undefined) {

_face.a.fromBufferAttribute(this.colorAttribute, faceIndex * 3);

_face.b.fromBufferAttribute(this.colorAttribute, faceIndex * 3 + 1);

_face.c.fromBufferAttribute(this.colorAttribute, faceIndex * 3 + 2);

_color.set(0, 0, 0).addScaledVector(_face.a, u).addScaledVector(_face.b, v).addScaledVector(_face.c, 1 - (u + v));

targetColor.r = _color.x;
targetColor.g = _color.y;
targetColor.b = _color.z;
}
return this;

}

}

THREE.MeshSurfaceSampler = MeshSurfaceSampler;

})();

</script>
<script>
(function () {

const _object_pattern = /^[og]\s*(.+)?/; // mtllib file_reference

const _material_library_pattern = /^mtllib /; // usemtl material_name

const _material_use_pattern = /^usemtl /; // usemap map_name

const _map_use_pattern = /^usemap /;

const _vA = new THREE.Vector3();

const _vB = new THREE.Vector3();

const _vC = new THREE.Vector3();

const _ab = new THREE.Vector3();

const _cb = new THREE.Vector3();

function ParserState() {

const state = {
objects: [],
object: {},
vertices: [],
normals: [],
colors: [],
uvs: [],
materials: {},
materialLibraries: [],
startObject: function (name, fromDeclaration) {

// If the current object (initial from reset) is not from a g/o declaration in the parsed
// file. We need to use it for the first parsed g/o to keep things in sync.
if (this.object && this.object.fromDeclaration === false) {

this.object.name = name;
this.object.fromDeclaration = fromDeclaration !== false;
return;

}

const previousMaterial = this.object && typeof this.object.currentMaterial === 'function' ? this.object.currentMaterial() : undefined;

if (this.object && typeof this.object._finalize === 'function') {

this.object._finalize(true);

}

this.object = {
name: name || '',
fromDeclaration: fromDeclaration !== false,
geometry: {
vertices: [],
normals: [],
colors: [],
uvs: [],
hasUVIndices: false
},
materials: [],
smooth: true,
startMaterial: function (name, libraries) {

const previous = this._finalize(false); // New usemtl declaration overwrites an inherited material, except if faces were declared
// after the material, then it must be preserved for proper MultiMaterial continuation.


if (previous && (previous.inherited || previous.groupCount <= 0)) {

this.materials.splice(previous.index, 1);

}

const material = {
index: this.materials.length,
name: name || '',
mtllib: Array.isArray(libraries) && libraries.length > 0 ? libraries[libraries.length - 1] : '',
smooth: previous !== undefined ? previous.smooth : this.smooth,
groupStart: previous !== undefined ? previous.groupEnd : 0,
groupEnd: - 1,
groupCount: - 1,
inherited: false,
clone: function (index) {

const cloned = {
index: typeof index === 'number' ? index : this.index,
name: this.name,
mtllib: this.mtllib,
smooth: this.smooth,
groupStart: 0,
groupEnd: - 1,
groupCount: - 1,
inherited: false
};
cloned.clone = this.clone.bind(cloned);
return cloned;

}
};
this.materials.push(material);
return material;

},
currentMaterial: function () {

if (this.materials.length > 0) {

return this.materials[this.materials.length - 1];

}

return undefined;

},
_finalize: function (end) {

const lastMultiMaterial = this.currentMaterial();

if (lastMultiMaterial && lastMultiMaterial.groupEnd === - 1) {

lastMultiMaterial.groupEnd = this.geometry.vertices.length / 3;
lastMultiMaterial.groupCount = lastMultiMaterial.groupEnd - lastMultiMaterial.groupStart;
lastMultiMaterial.inherited = false;

} // Ignore objects tail materials if no face declarations followed them before a new o/g started.


if (end && this.materials.length > 1) {

for (let mi = this.materials.length - 1; mi >= 0; mi--) {

if (this.materials[mi].groupCount <= 0) {

this.materials.splice(mi, 1);

}

}

} // Guarantee at least one empty material, this makes the creation later more straight forward.


if (end && this.materials.length === 0) {

this.materials.push({
name: '',
smooth: this.smooth
});

}

return lastMultiMaterial;

}
}; // Inherit previous objects material.
// Spec tells us that a declared material must be set to all objects until a new material is declared.
// If a usemtl declaration is encountered while this new object is being parsed, it will
// overwrite the inherited material. Exception being that there was already face declarations
// to the inherited material, then it will be preserved for proper MultiMaterial continuation.

if (previousMaterial && previousMaterial.name && typeof previousMaterial.clone === 'function') {

const declared = previousMaterial.clone(0);
declared.inherited = true;
this.object.materials.push(declared);

}

this.objects.push(this.object);

},
finalize: function () {

if (this.object && typeof this.object._finalize === 'function') {

this.object._finalize(true);

}

},
parseVertexIndex: function (value, len) {

const index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 3) * 3;

},
parseNormalIndex: function (value, len) {

const index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 3) * 3;

},
parseUVIndex: function (value, len) {

const index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 2) * 2;

},
addVertex: function (a, b, c) {

const src = this.vertices;
const dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
dst.push(src[b + 0], src[b + 1], src[b + 2]);
dst.push(src[c + 0], src[c + 1], src[c + 2]);

},
addVertexPoint: function (a) {

const src = this.vertices;
const dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);

},
addVertexLine: function (a) {

const src = this.vertices;
const dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);

},
addNormal: function (a, b, c) {

const src = this.normals;
const dst = this.object.geometry.normals;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
dst.push(src[b + 0], src[b + 1], src[b + 2]);
dst.push(src[c + 0], src[c + 1], src[c + 2]);

},
addFaceNormal: function (a, b, c) {

const src = this.vertices;
const dst = this.object.geometry.normals;

_vA.fromArray(src, a);

_vB.fromArray(src, b);

_vC.fromArray(src, c);

_cb.subVectors(_vC, _vB);

_ab.subVectors(_vA, _vB);

_cb.cross(_ab);

_cb.normalize();

dst.push(_cb.x, _cb.y, _cb.z);
dst.push(_cb.x, _cb.y, _cb.z);
dst.push(_cb.x, _cb.y, _cb.z);

},
addColor: function (a, b, c) {

const src = this.colors;
const dst = this.object.geometry.colors;
if (src[a] !== undefined) dst.push(src[a + 0], src[a + 1], src[a + 2]);
if (src[b] !== undefined) dst.push(src[b + 0], src[b + 1], src[b + 2]);
if (src[c] !== undefined) dst.push(src[c + 0], src[c + 1], src[c + 2]);

},
addUV: function (a, b, c) {

const src = this.uvs;
const dst = this.object.geometry.uvs;
dst.push(src[a + 0], src[a + 1]);
dst.push(src[b + 0], src[b + 1]);
dst.push(src[c + 0], src[c + 1]);

},
addDefaultUV: function () {

const dst = this.object.geometry.uvs;
dst.push(0, 0);
dst.push(0, 0);
dst.push(0, 0);

},
addUVLine: function (a) {

const src = this.uvs;
const dst = this.object.geometry.uvs;
dst.push(src[a + 0], src[a + 1]);

},
addFace: function (a, b, c, ua, ub, uc, na, nb, nc) {

const vLen = this.vertices.length;
let ia = this.parseVertexIndex(a, vLen);
let ib = this.parseVertexIndex(b, vLen);
let ic = this.parseVertexIndex(c, vLen);
this.addVertex(ia, ib, ic);
this.addColor(ia, ib, ic); // normals

if (na !== undefined && na !== '') {

const nLen = this.normals.length;
ia = this.parseNormalIndex(na, nLen);
ib = this.parseNormalIndex(nb, nLen);
ic = this.parseNormalIndex(nc, nLen);
this.addNormal(ia, ib, ic);

} else {

this.addFaceNormal(ia, ib, ic);

} // uvs


if (ua !== undefined && ua !== '') {

const uvLen = this.uvs.length;
ia = this.parseUVIndex(ua, uvLen);
ib = this.parseUVIndex(ub, uvLen);
ic = this.parseUVIndex(uc, uvLen);
this.addUV(ia, ib, ic);
this.object.geometry.hasUVIndices = true;

} else {

// add placeholder values (for inconsistent face definitions)
this.addDefaultUV();

}

},
addPointGeometry: function (vertices) {

this.object.geometry.type = 'Points';
const vLen = this.vertices.length;

for (let vi = 0, l = vertices.length; vi < l; vi++) {

const index = this.parseVertexIndex(vertices[vi], vLen);
this.addVertexPoint(index);
this.addColor(index);

}

},
addLineGeometry: function (vertices, uvs) {

this.object.geometry.type = 'Line';
const vLen = this.vertices.length;
const uvLen = this.uvs.length;

for (let vi = 0, l = vertices.length; vi < l; vi++) {

this.addVertexLine(this.parseVertexIndex(vertices[vi], vLen));

}

for (let uvi = 0, l = uvs.length; uvi < l; uvi++) {

this.addUVLine(this.parseUVIndex(uvs[uvi], uvLen));

}

}
};
state.startObject('', false);
return state;

} //


class OBJLoader extends THREE.Loader {

constructor(manager) {

super(manager);
this.materials = null;

}

load(url, onLoad, onProgress, onError) {

const scope = this;
const loader = new THREE.FileLoader(this.manager);
loader.setPath(this.path);
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(this.withCredentials);
loader.load(url, function (text) {

try {

onLoad(scope.parse(text));

} catch (e) {

if (onError) {

onError(e);

} else {

console.error(e);

}

scope.manager.itemError(url);

}

}, onProgress, onError);

}

setMaterials(materials) {

this.materials = materials;
return this;

}

parse(text) {

const state = new ParserState();

if (text.indexOf('\r\n') !== - 1) {

// This is faster than String.split with regex that splits on both
text = text.replace(/\r\n/g, '\n');

}

if (text.indexOf('\\\n') !== - 1) {

// join lines separated by a line continuation character (\)
text = text.replace(/\\\n/g, '');

}

const lines = text.split('\n');
let line = '',
lineFirstChar = '';
let lineLength = 0;
let result = []; // Faster to just trim left side of the line. Use if available.

const trimLeft = typeof ''.trimLeft === 'function';

for (let i = 0, l = lines.length; i < l; i++) {

line = lines[i];
line = trimLeft ? line.trimLeft() : line.trim();
lineLength = line.length;
if (lineLength === 0) continue;
lineFirstChar = line.charAt(0); // @todo invoke passed in handler if any

if (lineFirstChar === '#') continue;

if (lineFirstChar === 'v') {

const data = line.split(/\s+/);

switch (data[0]) {

case 'v':
state.vertices.push(parseFloat(data[1]), parseFloat(data[2]), parseFloat(data[3]));

if (data.length >= 7) {

state.colors.push(parseFloat(data[4]), parseFloat(data[5]), parseFloat(data[6]));

} else {

// if no colors are defined, add placeholders so color and vertex indices match
state.colors.push(undefined, undefined, undefined);

}

break;

case 'vn':
state.normals.push(parseFloat(data[1]), parseFloat(data[2]), parseFloat(data[3]));
break;

case 'vt':
state.uvs.push(parseFloat(data[1]), parseFloat(data[2]));
break;

}

} else if (lineFirstChar === 'f') {

const lineData = line.substr(1).trim();
const vertexData = lineData.split(/\s+/);
const faceVertices = []; // Parse the face vertex data into an easy to work with format

for (let j = 0, jl = vertexData.length; j < jl; j++) {

const vertex = vertexData[j];

if (vertex.length > 0) {

const vertexParts = vertex.split('/');
faceVertices.push(vertexParts);

}

} // Draw an edge between the first vertex and all subsequent vertices to form an n-gon


const v1 = faceVertices[0];

for (let j = 1, jl = faceVertices.length - 1; j < jl; j++) {

const v2 = faceVertices[j];
const v3 = faceVertices[j + 1];
state.addFace(v1[0], v2[0], v3[0], v1[1], v2[1], v3[1], v1[2], v2[2], v3[2]);

}

} else if (lineFirstChar === 'l') {

const lineParts = line.substring(1).trim().split(' ');
let lineVertices = [];
const lineUVs = [];

if (line.indexOf('/') === - 1) {

lineVertices = lineParts;

} else {

for (let li = 0, llen = lineParts.length; li < llen; li++) {

const parts = lineParts[li].split('/');
if (parts[0] !== '') lineVertices.push(parts[0]);
if (parts[1] !== '') lineUVs.push(parts[1]);

}

}

state.addLineGeometry(lineVertices, lineUVs);

} else if (lineFirstChar === 'p') {

const lineData = line.substr(1).trim();
const pointData = lineData.split(' ');
state.addPointGeometry(pointData);

} else if ((result = _object_pattern.exec(line)) !== null) {

// o object_name
// or
// g group_name
// WORKAROUND: https://bugs.chromium.org/p/v8/issues/detail?id=2869
// let name = result[ 0 ].substr( 1 ).trim();
const name = (' ' + result[0].substr(1).trim()).substr(1);
state.startObject(name);

} else if (_material_use_pattern.test(line)) {

// material
state.object.startMaterial(line.substring(7).trim(), state.materialLibraries);

} else if (_material_library_pattern.test(line)) {

// mtl file
state.materialLibraries.push(line.substring(7).trim());

} else if (_map_use_pattern.test(line)) {

// the line is parsed but ignored since the loader assumes textures are defined MTL files
// (according to https://www.okino.com/conv/imp_wave.htm, 'usemap' is the old-style Wavefront texture reference method)
console.warn('THREE.OBJLoader: Rendering identifier "usemap" not supported. Textures must be defined in MTL files.');

} else if (lineFirstChar === 's') {

result = line.split(' '); // smooth shading
// @todo Handle files that have varying smooth values for a set of faces inside one geometry,
// but does not define a usemtl for each face set.
// This should be detected and a dummy material created (later MultiMaterial and geometry groups).
// This requires some care to not create extra material on each smooth value for "normal" obj files.
// where explicit usemtl defines geometry groups.
// Example asset: examples/models/obj/cerberus/Cerberus.obj

/*
* http://paulbourke.net/dataformats/obj/
* or
* http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf
*
* From chapter "Grouping" Syntax explanation "s group_number":
* "group_number is the smoothing group number. To turn off smoothing groups, use a value of 0 or off.
* Polygonal elements use group numbers to put elements in different smoothing groups. For free-form
* surfaces, smoothing groups are either turned on or off; there is no difference between values greater
* than 0."
*/

if (result.length > 1) {

const value = result[1].trim().toLowerCase();
state.object.smooth = value !== '0' && value !== 'off';

} else {

// ZBrush can produce "s" lines #11707
state.object.smooth = true;

}

const material = state.object.currentMaterial();
if (material) material.smooth = state.object.smooth;

} else {

// Handle null terminated files without exception
if (line === '\0') continue;
console.warn('THREE.OBJLoader: Unexpected line: "' + line + '"');

}

}

state.finalize();
const container = new THREE.Group();
container.materialLibraries = [].concat(state.materialLibraries);
const hasPrimitives = !(state.objects.length === 1 && state.objects[0].geometry.vertices.length === 0);

if (hasPrimitives === true) {

for (let i = 0, l = state.objects.length; i < l; i++) {

const object = state.objects[i];
const geometry = object.geometry;
const materials = object.materials;
const isLine = geometry.type === 'Line';
const isPoints = geometry.type === 'Points';
let hasVertexColors = false; // Skip o/g line declarations that did not follow with any faces

if (geometry.vertices.length === 0) continue;
const buffergeometry = new THREE.BufferGeometry();
buffergeometry.setAttribute('position', new THREE.Float32BufferAttribute(geometry.vertices, 3));

if (geometry.normals.length > 0) {

buffergeometry.setAttribute('normal', new THREE.Float32BufferAttribute(geometry.normals, 3));

}

if (geometry.colors.length > 0) {

hasVertexColors = true;
buffergeometry.setAttribute('color', new THREE.Float32BufferAttribute(geometry.colors, 3));

}

if (geometry.hasUVIndices === true) {

buffergeometry.setAttribute('uv', new THREE.Float32BufferAttribute(geometry.uvs, 2));

} // Create materials


const createdMaterials = [];

for (let mi = 0, miLen = materials.length; mi < miLen; mi++) {

const sourceMaterial = materials[mi];
const materialHash = sourceMaterial.name + '_' + sourceMaterial.smooth + '_' + hasVertexColors;
let material = state.materials[materialHash];

if (this.materials !== null) {

material = this.materials.create(sourceMaterial.name); // mtl etc. loaders probably can't create line materials correctly, copy properties to a line material.

if (isLine && material && !(material instanceof THREE.LineBasicMaterial)) {

const materialLine = new THREE.LineBasicMaterial();
THREE.Material.prototype.copy.call(materialLine, material);
materialLine.color.copy(material.color);
material = materialLine;

} else if (isPoints && material && !(material instanceof THREE.PointsMaterial)) {

const materialPoints = new THREE.PointsMaterial({
size: 10,
sizeAttenuation: false
});
THREE.Material.prototype.copy.call(materialPoints, material);
materialPoints.color.copy(material.color);
materialPoints.map = material.map;
material = materialPoints;

}

}

if (material === undefined) {

if (isLine) {

material = new THREE.LineBasicMaterial();

} else if (isPoints) {

material = new THREE.PointsMaterial({
size: 1,
sizeAttenuation: false
});

} else {

material = new THREE.MeshPhongMaterial();

}

material.name = sourceMaterial.name;
material.flatShading = sourceMaterial.smooth ? false : true;
material.vertexColors = hasVertexColors;
state.materials[materialHash] = material;

}

createdMaterials.push(material);

} // Create mesh


let mesh;

if (createdMaterials.length > 1) {

for (let mi = 0, miLen = materials.length; mi < miLen; mi++) {

const sourceMaterial = materials[mi];
buffergeometry.addGroup(sourceMaterial.groupStart, sourceMaterial.groupCount, mi);

}

if (isLine) {

mesh = new THREE.LineSegments(buffergeometry, createdMaterials);

} else if (isPoints) {

mesh = new THREE.Points(buffergeometry, createdMaterials);

} else {

mesh = new THREE.Mesh(buffergeometry, createdMaterials);

}

} else {

if (isLine) {

mesh = new THREE.LineSegments(buffergeometry, createdMaterials[0]);

} else if (isPoints) {

mesh = new THREE.Points(buffergeometry, createdMaterials[0]);

} else {

mesh = new THREE.Mesh(buffergeometry, createdMaterials[0]);

}

}

mesh.name = object.name;
container.add(mesh);

}

} else {

// if there is only the default parser state object with no geometry data, interpret data as point cloud
if (state.vertices.length > 0) {

const material = new THREE.PointsMaterial({
size: 1,
sizeAttenuation: false
});
const buffergeometry = new THREE.BufferGeometry();
buffergeometry.setAttribute('position', new THREE.Float32BufferAttribute(state.vertices, 3));

if (state.colors.length > 0 && state.colors[0] !== undefined) {

buffergeometry.setAttribute('color', new THREE.Float32BufferAttribute(state.colors, 3));
material.vertexColors = true;

}

const points = new THREE.Points(buffergeometry, material);
container.add(points);

}

}

return container;

}

}

THREE.OBJLoader = OBJLoader;

})();

</script>
</body>

</html>