# 1.5 创建岭回归
 import sys
 import numpy as np
 from sklearn import linear_model
 import sklearn.metrics as sm
 filename = sys.argv[1]
 X = []
 y = []with open(filename, 'r') as f:
     for line in f.readlines():
         xt, yt = [float(i) for i in line.split(',')]
         X.append(xt)
         y.append(yt)
 ## 读取训练数据~~~
 num_training = int(0.8 * len(X))
 num_test = len(X) - num_training# 训练数据
 X_train = np.array(X[:num_training]).reshape((num_training,1 ))
 y_train = np.array(y[:num_training])
 # 测试数据
 X_test = np.array(X[num_training:]).reshape((num_test,1 ))
 y_test = np.array(y[num_training:])
 # ~~~1回归器 进行运算
 # 创建岭回归器就是用普通最小二乘法的线性回归器
 ridge_regressor = linear_model.Ridge(alpha=0.01,fit_intercept=True,max_iter=10000)
 # 训练数据
 ridge_regressor.fit(X_train, y_train)
 y_test_pred_ridge = ridge_regressor.predict(X_test)##~~~ 4 训练的展示
 import matplotlib.pyplot as plt
 y_train_pred = ridge_regressor.predict(X_train)
 plt.figure()
 plt.scatter(X_train, y_train, color='green')
 plt.plot(X_train, y_train_pred, color='black', linewidth=4)
 plt.title('Training data')
 plt.show()
 # ~~ 5 预测-画出预测图
 y_test_pred_ridge = ridge_regressor.predict(X_test)
 plt.scatter(X_test, y_test, color='green')
 plt.plot(X_test, y_test_pred_ridge, color='black', linewidth=4)
 plt.title('Test data')
 plt.show()print("Mean absolute error =", round(sm.mean_absolute_error(y_test, y_test_pred_ridge), 2))
 print("Mean squared error =", round(sm.mean_squared_error(y_test, y_test_pred_ridge), 2))
 print("Median absolute error =", round(sm.median_absolute_error(y_test, y_test_pred_ridge), 2))
 print("Explain variance score =", round(sm.explained_variance_score(y_test, y_test_pred_ridge),2))
 print("R2 score =", round(sm.r2_score(y_test, y_test_pred_ridge), 2))

结果:

机器学习-岭回归_数据