Fibonacci again and again
原创
©著作权归作者所有:来自51CTO博客作者caoanda的原创作品,请联系作者获取转载授权,否则将追究法律责任
Fibonacci again and again
参考:SG函数和SG定理【详解】
思路:这是比较简单的SG定理的运用,SG定理——游戏和的SG函数等于各个游戏SG函数的Nim和
如果一个位置x
的SG值为0,那么这个点就为必败点P
,否则就是必胜点N
必败点:用N表示
必胜点:用P表示
对于任意状态x
, 定义SG(x) = mex(S)
,其中 S
是 x
后继状态的SG函数值的集合。如 x
有三个后继状态分别为 SG(a),SG(b),SG(c)
,那么SG(x) = mex{SG(a),SG(b),SG(c)}
。 这样 集合S
的终态必然是空集,所以SG函数的终态为 SG(x) = 0
,当且仅当 x
为必败点P时。
注:后继状态指的是在这个状态之前可以通过某些操作到达当前状态的状态
代码:
// Created by CAD on 2019/9/7.
#include <bits/stdc++.h>
#define mst(name, value) memset(name,value,sizeof(name))
using namespace std;
int f[50],SG[1005],x[1005];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
f[0]=f[1]=1;
for(int i=2;i<=16;++i)
f[i]=f[i-1]+f[i-2];
for(int i=1;i<=1000;++i)
{
mst(x,0);
for(int j=1;j<=16&&f[j]<=i;++j)
x[SG[i-f[j]]]=1;
for(int j=0;;++j)
if(!x[j])
{
SG[i]=j;
break;
}
}
int n,m,p;
while(cin>>n>>m>>p&&(n+m+p))
{
if(SG[n]^SG[m]^SG[p]) puts("Fibo");
else puts("Nacci");
}
return 0;
}
CAD加油!欢迎跟我一起讨论学习算法