i2c设备驱动有两种模式:一种是用户模式设备驱动,这种驱动依赖于i2c子系统中i2c-dev驱动,这种驱动对应用程序员的要求很高,要求应用程序员了解硬件的一些东西,了解时序、地址等;另一种是普通的设备驱动,应用程序员在使用的时候就像读写文件一样。

在linux驱动中/drivers/i2c/目录下有i2c-dev.c提供了I2C设备的通用驱动,实现了read(),write(),ioctl等函数,不过这里的read()和write()函数只能对应一条消息,即如下,

i2c驱动之调用ioctl函数进行读写at24c08_ioctl


i2c驱动之调用ioctl函数进行读写at24c08_#define_02

i2c驱动之调用ioctl函数进行读写at24c08_at24c08_03

i2c驱动之调用ioctl函数进行读写at24c08_#include_04


但是如果碰到下面的情况:

i2c驱动之调用ioctl函数进行读写at24c08_at24c08_05

先写一次地址,然后再开始读数据,即分为两次消息,这个时候read(),write()函数就不能正常读写了,因为先write()地址之后总线上会有stop,之后read(),就与figure 5中所示(中间没有stop)不符了,所以必须利用ioctl函数来发送两条消息,这样中间就没有stop了,发送完这两条消息才有stop。


下面就是使用ioctl函数去写和读at24c08存储器,先看下两个重要的结构体

1、struct i2c_rdwr_ioctl_data结构体


* This is the structure as used in the I2C_RDWR ioctl call */
struct i2c_rdwr_ioctl_data {
struct i2c_msg __user *msgs; /* pointers to i2c_msgs */
__u32 nmsgs; /* number of i2c_msgs */
};

msgs使用前必须先分配一下内存,msgs=(struct i2c_msg *)malloc(nmsgs*sizeof(struct i2c_msg));

nmsgs是msgs的个数


2、struct i2c_msg结构体


struct i2c_msg {
__u16 addr; /* slave address */
__u16 flags;
#define I2C_M_TEN 0x0010 /* this is a ten bit chip address */
#define I2C_M_RD 0x0001 /* read data, from slave to master */
#define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */
__u16 len; /* msg length */
__u8 *buf; /* pointer to msg data */
};

l

en是指buf的长度

buf在使用前必须先分配内存,buf=(unsigned char *)malloc(len);

一般如果写,buf[0]是写的地址,buf[1]之后都是写的数据了;如果读,第一遍写地址时buf[0]是地址,第二遍读数据时存放读的数据


/*
//作者:王磊
//日期:2013.11.17
//文件功能:实现ioctl函数调用,并操作i2c设备/dev/i2c/0进行读写数据
*/
#include<stdio.h>
#include<linux/types.h>
#include<fcntl.h>
#include<unistd.h>
#include<stdlib.h>
#include<sys/types.h>
#include<sys/ioctl.h>
#include<errno.h>
#include<assert.h>
#include<string.h>
#include<linux/i2c.h>
#include<linux/i2c-dev.h>

int main(int argc, char** argv)
{
struct i2c_rdwr_ioctl_data work_queue;

unsigned int slave_address,reg_address,dat;
int i,ret;
unsigned char val;
unsigned int fd;

if(argc != 3)
{
printf("usage:./eeprom_ioctl address data\n");
return 0;
}
fd=open("/dev/i2c/0",O_RDWR);
if(!fd)
{
printf("error on opening the device file\n");
exit(1);
}
ioctl(fd,I2C_TIMEOUT,2);//超时时间
ioctl(fd,I2C_RETRIES,1);//重复次数

slave_address = 0x50;//24c08的访问地址是101000b
reg_address = (argv[1][2]-48)<<4 | (argv[1][3]-48);
dat = (argv[2][2]-48)<<4 | (argv[2][3]-48);
//nmsgs决定了有多少start信号
//一个msgs对应一个start信号
//在nmsg个信号结束后总线会产生一个stop
//下面因为在操作时序中最多用到2个start信号(字节读操作中)
work_queue.nmsgs = 2;
work_queue.msgs = (struct i2c_msg *)malloc(work_queue.nmsgs * sizeof(work_queue.msgs));
if(!work_queue.msgs)
{
printf("memory alloc failed");
close(fd);
exit(1);
}
//往i2c里面写数据
printf("began to write:\n");
work_queue.nmsgs = 1;
(work_queue.msgs[0]).len = 2;//buf的长度
(work_queue.msgs[0]).flags = 0;//write
(work_queue.msgs[0]).addr = slave_address;//设备地址
(work_queue.msgs[0]).buf = (unsigned char *)malloc(2);
(work_queue.msgs[0]).buf[0] = reg_address;//写的地址
(work_queue.msgs[0]).buf[1] = dat;//你要写的数据

ret = ioctl(fd, I2C_RDWR, (unsigned long)&work_queue);
if(ret < 0)
printf("error during I2C_RDWR ioctl with error code %d\n", ret);

//从i2c里面读出数据
printf("\nbegan to read:\n");
work_queue.nmsgs = 2;
//先设定一下地址
(work_queue.msgs[0]).len = 1;
(work_queue.msgs[0]).flags = 0;//write
(work_queue.msgs[0]).addr = slave_address;
(work_queue.msgs[0]).buf[0] = reg_address;//因为上面buf已经分配过了
//然后从刚才设定的地址处读
(work_queue.msgs[1]).len = 1;
(work_queue.msgs[1]).flags = I2C_M_RD;
(work_queue.msgs[1]).addr = slave_address;
(work_queue.msgs[1]).buf = (unsigned char *)malloc(1);
(work_queue.msgs[1]).buf[0] = 0;//初始化读缓冲

ret = ioctl(fd, I2C_RDWR, (unsigned long)&work_queue);
if(ret < 0)
printf("error during I2C_RDWR ioctl with error code %d\n", ret);

close(fd);
return 0;

}


下面这篇文章写的不错,可以参考一下:

​http://www.61ic.com/Technology/embed/201303/47398.html​