clc;
clear;
close all;
warning off;%%
%--------------------------------------------------------------------------------
%
% Different information measures comparison
%
%--------------------------------------------------------------------------------
%
% This script generates:
% - noise level estimates for Rayleigh distributed data for different
% information measures, i.e., J-divergence, Renyi's divergence, Vajda's measure
% - plots estimators' bias, variance and mean square error (MSE)
%--------------------------------------------------------------------------
%
% (!!!) Before running this script:
% - set appropriate 'iterations' value, e.g., iterations = 1000;
% - set appropriate 'source_path' value
%
%----------------------------- PATHS -----------------------------------
%addpath('plot2svg');
%addpath('DataIO');
addpath('MSP');
addpath('QuantitativeMeasures');
addpath('ReferenceMethods');%--------------------- SIMULATION PARAMETERS ---------------------------
% simulation
iterations = 100; % iterations
sigma_vector = 5:5:50; % noise levels% numerical optimization properties (gradient descent method)
sigma0 = 10;
step_size = 5;
max_iter = 100;
max_tolerance = 1e-3;
delta = 0;% Read real raw data
%ReadData_Transverse % (!!!) CONNECT TO YOUR OWN DATA% Temporary handle artificial data - COMMENT HERE
dataset_re = zeros(217, 181); % real part of the MRI image
dataset_im = zeros(217, 181); % imaginary part of the MRI imagemask_T1_1mm_bg = zeros(217, 181); % background mask of the MRI image - PUT YOUR MASK HERE
mask_T1_1mm_bg(50:150, 50:100) = 1; % artificial background mask%% Rayleigh distribution (background data)
Rayleigh_MSP_results_GD_KL1 = zeros(iterations, length(sigma_vector)); % Kullback-Leibler divergence, k = 1
Rayleigh_MSP_results_GD_KL2 = zeros(iterations, length(sigma_vector)); % Kullback-Leibler divergence, k = 4Rayleigh_MSP_results_GD_Jeffreys1 = zeros(iterations, length(sigma_vector)); % J-divergence, k = 1
Rayleigh_MSP_results_GD_Jeffreys2 = zeros(iterations, length(sigma_vector)); % J-divergence, k = 4
Rayleigh_MSP_results_GD_Renyi1 = zeros(iterations, length(sigma_vector)); % Renyi, k = 1, p = 1/2
%Rayleigh_MSP_results_GD_Renyi2 = zeros(iterations, length(sigma_vector)); % Renyi, k = 1, p = 2
Rayleigh_MSP_results_GD_Renyi3 = zeros(iterations, length(sigma_vector)); % Renyi, k = 4, p = 2%Rayleigh_MSP_results_NM_Vajda1 = zeros(iterations, length(sigma_vector)); % Vajda, k = 1, p = 1
Rayleigh_MSP_results_NM_Vajda2 = zeros(iterations, length(sigma_vector)); % Vajda, k = 1, p = 2
%Rayleigh_MSP_results_NM_Vajda3 = zeros(iterations, length(sigma_vector)); % Vajda, k = 4, p = 2 FUNCTION_HANDLE_MSP_RAYLEIGH_KL = @(sigma_, m_, k_, delta_, weights_)MSP_Rayleigh_distribution(sigma_, m_, k_, delta_, weights_);
FUNCTION_HANDLE_MSP_RAYLEIGH_JEFFREYS = @(sigma_, m_, k_, delta_, weights_)MSP_Rayleigh_distribution_Jeffreys_Divergence(sigma_, m_, k_, delta_, weights_);
FUNCTION_HANDLE_MSP_RAYLEIGH_RENYI = @(sigma_, m_, k_, delta_, weights_)MSP_Rayleigh_distribution_Renyi_Divergence(sigma_, m_, k_, delta_, weights_);
%----------------------------------------------------------------------------- for iter=1:iterations
for noise_level=1:length(sigma_vector) sigma = sigma_vector(noise_level);
% Noise in magnitude
dataset_noise1 = random('norm', 0, sigma, size(dataset_re, 1), size(dataset_re, 2));
dataset_noise2 = random('norm', 0, sigma, size(dataset_im, 1), size(dataset_im, 2));
dataset_T1_1mm_noisy = sqrt( (dataset_re + dataset_noise1).^2 + (dataset_im + dataset_noise2).^2 ); data = dataset_T1_1mm_noisy .* mask_T1_1mm_bg;
data = data(:);
data = data(data > 0);
data = sort(data);
% ------------------------------- Individual information measures ------------------------------
% Kullback-Leibler (gradient descent optimization method) - k = 1 - KULLBACK-LEIBLER DIVERGENCE
[sigma_MSP_GD_KL1, function_value_MSP_GD_KL1] = Optimization_Rayleigh_GD(FUNCTION_HANDLE_MSP_RAYLEIGH_KL, sigma0, data, 1, delta, step_size, max_iter, max_tolerance, 0); % Kullback-Leibler (gradient descent optimization method) - k = 4 - KULLBACK-LEIBLER DIVERGENCE
[sigma_MSP_GD_KL2, function_value_MSP_GD_KL2] = Optimization_Rayleigh_GD(FUNCTION_HANDLE_MSP_RAYLEIGH_KL, sigma0, data, 4, delta, step_size, max_iter, max_tolerance, 0);
%-----------------------------------------------------------------------------------
% J-divergence (gradient descent optimization method) - k = 1 - J-DIVERGENCE
[sigma_MSP_GD_Jeffreys1, function_value_MSP_GD_Jeffreys1] = Optimization_Rayleigh_GD(FUNCTION_HANDLE_MSP_RAYLEIGH_JEFFREYS, sigma0, data, 1, delta, step_size, max_iter, max_tolerance, 0); % J-divergence (gradient descent optimization method) - k = 4 - J-DIVERGENCE
[sigma_MSP_GD_Jeffreys2, function_value_MSP_GD_Jeffreys2] = Optimization_Rayleigh_GD(FUNCTION_HANDLE_MSP_RAYLEIGH_JEFFREYS, sigma0, data, 4, delta, step_size, max_iter, max_tolerance, 0);
%-----------------------------------------------------------------------------------
%-----------------------------------------------------------------------------------
% Renyi divergence (Nelder-Mead optimization method) - k = 1, p = 1/2 - RENYI'S DIVERGENCE
%[sigma_MSP_GD_Renyi1, function_value_MSP_GD_Renyi1] = Optimization_Rayleigh_GD(FUNCTION_HANDLE_MSP_RAYLEIGH_RENYI, sigma0, data, 1, delta, step_size, max_iter, max_tolerance, 0.5);
n = length(data); k = 1; p = 1/2;
beta = (n+1)/k;
RENYI1 = @(sigma) ( -((sign(1-p) * beta^p)/(n-k+2)) .* ( (1 - exp(-(data(k).^2) ./ (2*sigma^2)))^p + sum((exp(-(data(1:n-k).^2) ./ (2*sigma^2)) - exp(-(data(k+1:n).^2) ./ (2*sigma^2))).^p) + exp(-(data(n-k+1).^2) ./ (2*sigma^2))^p));
sigma_MSP_GD_Renyi1 = fminsearch(RENYI1, sigma0);
%-----------------------------------------------------------------------------------
%-----------------------------------------------------------------------------------
% Renyi divergence (Nelder-Mead optimization method) - k = 4, p = 2 - RENYI'S DIVERGENCE
%[sigma_MSP_GD_Renyi3, function_value_MSP_GD_Renyi3] = Optimization_Rayleigh_GD(FUNCTION_HANDLE_MSP_RAYLEIGH_RENYI, sigma0, data, 4, delta, step_size, max_iter, max_tolerance, 2);
n = length(data); k = 4; p = 2;
beta = (n+1)/k;
RENYI3 = @(sigma) ( -((sign(1-p) * beta^p)/(n-k+2)) .* ( (1 - exp(-(data(k).^2) ./ (2*sigma^2)))^p + sum((exp(-(data(1:n-k).^2) ./ (2*sigma^2)) - exp(-(data(k+1:n).^2) ./ (2*sigma^2))).^p) + exp(-(data(n-k+1).^2) ./ (2*sigma^2))^p));
sigma_MSP_GD_Renyi3 = fminsearch(RENYI3, sigma0);
%-----------------------------------------------------------------------------------
%-----------------------------------------------------------------------------------
% Vajda's measure (Nelder-Mead optimization method) - k = 1, p = 2
n = length(data); k = 1; p = 2;
beta = (n+1)/k;
VAJDA2 = @(sigma) ( (1/(n-k+2)) .* ( abs( 1 - beta*(1 - exp(-(data(k).^2) ./ (2*sigma^2)) ) )^p + sum( ( abs(1 - beta*(exp(-(data(1:n-k).^2) ./ (2*sigma^2)) - exp(-(data(k+1:n).^2) ./ (2*sigma^2))) ) ).^p ) + (abs(1 - beta*exp(-(data(n-k+1).^2) ./ (2*sigma^2))))^p ) );
sigma_MSP_NM_Vajda2 = fminsearch(VAJDA2, sigma0);
%-----------------------------------------------------------------------------------
% store results in arrays
Rayleigh_MSP_results_GD_KL1(iter, noise_level) = sigma_MSP_GD_KL1;
Rayleigh_MSP_results_GD_KL2(iter, noise_level) = sigma_MSP_GD_KL2;
Rayleigh_MSP_results_GD_Jeffreys1(iter, noise_level) = sigma_MSP_GD_Jeffreys1;
Rayleigh_MSP_results_GD_Jeffreys2(iter, noise_level) = sigma_MSP_GD_Jeffreys2;
Rayleigh_MSP_results_GD_Renyi1(iter, noise_level) = sigma_MSP_GD_Renyi1;
Rayleigh_MSP_results_GD_Renyi3(iter, noise_level) = sigma_MSP_GD_Renyi3;
Rayleigh_MSP_results_NM_Vajda2(iter, noise_level) = sigma_MSP_NM_Vajda2; end
fprintf('%.1f %%\n', (iter/iterations)*100);
end % bias(sigma_hat)
MSP_GD_vector_mean_bias_KL1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_bias_KL2 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_bias_Jeffreys1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_bias_Jeffreys2 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_bias_Renyi1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_bias_Renyi3 = zeros(1, length(sigma_vector));
MSP_NM_vector_mean_bias_Vajda2 = zeros(1, length(sigma_vector));% variance(sigma_hat)
MSP_GD_vector_mean_var_KL1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_var_KL2 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_var_Jeffreys1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_var_Jeffreys2 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_var_Renyi1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_var_Renyi3 = zeros(1, length(sigma_vector));
MSP_NM_vector_mean_var_Vajda2 = zeros(1, length(sigma_vector));% mse(sigma_hat)
MSP_GD_vector_mean_mse_KL1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_mse_KL2 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_mse_Jeffreys1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_mse_Jeffreys2 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_mse_Renyi1 = zeros(1, length(sigma_vector));
MSP_GD_vector_mean_mse_Renyi3 = zeros(1, length(sigma_vector));
MSP_NM_vector_mean_mse_Vajda2 = zeros(1, length(sigma_vector)); for k=1:length(sigma_vector)
% bias(sigma) = E(sigma_hat) - sigma
MSP_GD_vector_mean_bias_KL1(k) = mean(Rayleigh_MSP_results_GD_KL1(:,k)) - sigma_vector(k);
MSP_GD_vector_mean_bias_KL2(k) = mean(Rayleigh_MSP_results_GD_KL2(:,k)) - sigma_vector(k);
MSP_GD_vector_mean_bias_Jeffreys1(k) = mean(Rayleigh_MSP_results_GD_Jeffreys1(:,k)) - sigma_vector(k);
MSP_GD_vector_mean_bias_Jeffreys2(k) = mean(Rayleigh_MSP_results_GD_Jeffreys2(:,k)) - sigma_vector(k);
MSP_GD_vector_mean_bias_Renyi1(k) = mean(Rayleigh_MSP_results_GD_Renyi1(:,k)) - sigma_vector(k);
MSP_GD_vector_mean_bias_Renyi3(k) = mean(Rayleigh_MSP_results_GD_Renyi3(:,k)) - sigma_vector(k);
MSP_NM_vector_mean_bias_Vajda2(k) = mean(Rayleigh_MSP_results_NM_Vajda2(:,k)) - sigma_vector(k);
% variance(sigma_hat) = E(sigma_hat^2) - E^2(sigma_hat)
MSP_GD_vector_mean_var_KL1(k) = mean(Rayleigh_MSP_results_GD_KL1(:,k).^2) - mean(Rayleigh_MSP_results_GD_KL1(:,k)).^2;
MSP_GD_vector_mean_var_KL2(k) = mean(Rayleigh_MSP_results_GD_KL2(:,k).^2) - mean(Rayleigh_MSP_results_GD_KL2(:,k)).^2;
MSP_GD_vector_mean_var_Jeffreys1(k) = mean(Rayleigh_MSP_results_GD_Jeffreys1(:,k).^2) - mean(Rayleigh_MSP_results_GD_Jeffreys1(:,k)).^2;
MSP_GD_vector_mean_var_Jeffreys2(k) = mean(Rayleigh_MSP_results_GD_Jeffreys2(:,k).^2) - mean(Rayleigh_MSP_results_GD_Jeffreys2(:,k)).^2;
MSP_GD_vector_mean_var_Renyi1(k) = mean(Rayleigh_MSP_results_GD_Renyi1(:,k).^2) - mean(Rayleigh_MSP_results_GD_Renyi1(:,k)).^2;
MSP_GD_vector_mean_var_Renyi3(k) = mean(Rayleigh_MSP_results_GD_Renyi3(:,k).^2) - mean(Rayleigh_MSP_results_GD_Renyi3(:,k)).^2;
MSP_NM_vector_mean_var_Vajda2(k) = mean(Rayleigh_MSP_results_NM_Vajda2(:,k).^2) - mean(Rayleigh_MSP_results_NM_Vajda2(:,k)).^2;
% MSE(sigma) = bias(sigma)^2 + variance(sigma_hat)
MSP_GD_vector_mean_mse_KL1(k) = ImageRMSE(Rayleigh_MSP_results_GD_KL1(:,k), sigma_vector(k) .* ones(size(Rayleigh_MSP_results_GD_KL1(:,k))), ones(size(Rayleigh_MSP_results_GD_KL1(:,k))));
MSP_GD_vector_mean_mse_KL2(k) = ImageRMSE(Rayleigh_MSP_results_GD_KL2(:,k), sigma_vector(k) .* ones(size(Rayleigh_MSP_results_GD_KL2(:,k))), ones(size(Rayleigh_MSP_results_GD_KL2(:,k))));
MSP_GD_vector_mean_mse_Jeffreys1(k) = ImageRMSE(Rayleigh_MSP_results_GD_Jeffreys1(:,k), sigma_vector(k) .* ones(size(Rayleigh_MSP_results_GD_Jeffreys1(:,k))), ones(size(Rayleigh_MSP_results_GD_Jeffreys1(:,k))));
MSP_GD_vector_mean_mse_Jeffreys2(k) = ImageRMSE(Rayleigh_MSP_results_GD_Jeffreys2(:,k), sigma_vector(k) .* ones(size(Rayleigh_MSP_results_GD_Jeffreys2(:,k))), ones(size(Rayleigh_MSP_results_GD_Jeffreys2(:,k))));
MSP_GD_vector_mean_mse_Renyi1(k) = ImageRMSE(Rayleigh_MSP_results_GD_Renyi1(:,k), sigma_vector(k) .* ones(size(Rayleigh_MSP_results_GD_Renyi1(:,k))), ones(size(Rayleigh_MSP_results_GD_Renyi1(:,k))));
MSP_GD_vector_mean_mse_Renyi3(k) = ImageRMSE(Rayleigh_MSP_results_GD_Renyi3(:,k), sigma_vector(k) .* ones(size(Rayleigh_MSP_results_GD_Renyi3(:,k))), ones(size(Rayleigh_MSP_results_GD_Renyi3(:,k))));
MSP_NM_vector_mean_mse_Vajda2(k) = ImageRMSE(Rayleigh_MSP_results_NM_Vajda2(:,k), sigma_vector(k) .* ones(size(Rayleigh_MSP_results_NM_Vajda2(:,k))), ones(size(Rayleigh_MSP_results_NM_Vajda2(:,k))));
end %---------------------------- mean bias(sigma_hat) --------------------------
figure,
hold on
plot(sigma_vector, MSP_GD_vector_mean_bias_KL1, '^-', 'Color', [49/255, 57/255, 174/255], 'LineWidth', 1.5, 'MarkerSize', 11);
plot(sigma_vector, MSP_GD_vector_mean_bias_KL2, '>-', 'Color', [221/255 42/255 43/255], 'LineWidth', 1.5, 'MarkerSize', 11)
plot(sigma_vector, MSP_GD_vector_mean_bias_Jeffreys1, 'd-', 'Color', [0 0.6 0.2], 'LineWidth', 1.5, 'MarkerSize', 12);
plot(sigma_vector, MSP_GD_vector_mean_bias_Renyi1, 's-', 'Color', [0 0 0], 'LineWidth', 1.5, 'MarkerSize', 9);
plot(sigma_vector, MSP_GD_vector_mean_bias_Renyi3, 'x-', 'Color', [115/255 130/255 179/255], 'LineWidth', 1.5, 'MarkerSize', 13);
plot(sigma_vector, MSP_NM_vector_mean_bias_Vajda2, 'o-', 'Color', [255/255 165/255 0], 'LineWidth', 1.5, 'MarkerSize', 11);
legend('Kullback-Leibler divergence (k=1)', 'Kullback-Leibler divergence (k=4)', 'J-divergence (k=1)', 'Renyi divergence (k=1, p=0.5)', 'Renyi divergence (k=4, p=2)', 'Vajda''s measure (k=1, p=2)', 'location', 'NorthEast');
grid on
hold off
xlabel('Noise level \sigma');
ylabel('Bias(\sigma)');
text_size = 16;
set(gca, 'FontSize', text_size);
set(get(gca,'xlabel'), 'FontSize', text_size);
set(get(gca,'ylabel'), 'FontSize', text_size);
%set(gca,'YTick', -0.1:0.1:0.9);
%axis([5, 50, -0.1, 0.9]);
%plot2svg('bias_different_measures.svg', 1);%------------------------ variance(sigma) ----------------------------------------------
sigma_CRLB = linspace(sigma_vector(1), sigma_vector(length(sigma_vector)), 1000);
CRLB = sigma_CRLB.^2 / (4 * length(data));
figure,
hold on
plot(sigma_CRLB, CRLB, '--', 'Color', [0 0 0], 'LineWidth', 2.5);
plot(sigma_vector, MSP_GD_vector_mean_var_KL1, '^-', 'Color', [49/255, 57/255, 174/255], 'LineWidth', 1.5, 'MarkerSize', 11);
plot(sigma_vector, MSP_GD_vector_mean_var_KL2, '>-', 'Color', [221/255 42/255 43/255], 'LineWidth', 1.5, 'MarkerSize', 11)
plot(sigma_vector, MSP_GD_vector_mean_var_Jeffreys1, 'd-', 'Color', [0 0.6 0.2], 'LineWidth', 1.5, 'MarkerSize', 12);
plot(sigma_vector, MSP_GD_vector_mean_var_Renyi1, 's-', 'Color', [0 0 0], 'LineWidth', 1.5, 'MarkerSize', 9);
plot(sigma_vector, MSP_GD_vector_mean_var_Renyi3, 'x-', 'Color', [115/255 130/255 179/255], 'LineWidth', 1.5, 'MarkerSize', 13);
plot(sigma_vector, MSP_NM_vector_mean_var_Vajda2, 'o-', 'Color', [255/255 165/255 0], 'LineWidth', 1.5, 'MarkerSize', 11);
hold off
grid on
xlabel('Noise level \sigma');
ylabel('Variance(\sigma)');
legend('CRLB_\sigma(\sigma)');
text_size = 16;
set(gca, 'FontSize', text_size);
set(get(gca,'xlabel'), 'FontSize', text_size);
set(get(gca,'ylabel'), 'FontSize', text_size);
%axis([5, 50, 0, 0.11]);
%set(gca,'YTick', 0:0.01:0.11);
%plot2svg('variance_different_measures.svg', 2);%----------------------- MSE(sigma) -----------------------------------------------------
figure,
hold on
plot(sigma_vector, MSP_GD_vector_mean_mse_KL1, '^-', 'Color', [49/255, 57/255, 174/255], 'LineWidth', 1.5, 'MarkerSize', 11);
plot(sigma_vector, MSP_GD_vector_mean_mse_KL2, '>-', 'Color', [221/255 42/255 43/255], 'LineWidth', 1.5, 'MarkerSize', 11)
plot(sigma_vector, MSP_GD_vector_mean_mse_Jeffreys1, 'd-', 'Color', [0 0.6 0.2], 'LineWidth', 1.5, 'MarkerSize', 12);
plot(sigma_vector, MSP_GD_vector_mean_mse_Renyi1, 's-', 'Color', [0 0 0], 'LineWidth', 1.5, 'MarkerSize', 9);
plot(sigma_vector, MSP_GD_vector_mean_mse_Renyi3, 'x-', 'Color', [115/255 130/255 179/255], 'LineWidth', 1.5, 'MarkerSize', 13);
plot(sigma_vector, MSP_NM_vector_mean_mse_Vajda2, 'o-', 'Color', [255/255 165/255 0], 'LineWidth', 1.5, 'MarkerSize', 11);
legend('Kullback-Leibler divergence (k=1)', 'Kullback-Leibler divergence (k=4)', 'J-divergence (k=1)', 'Renyi divergence (k=1, p=0.5)', 'Renyi divergence (k=4, p=2)', 'Vajda''s measure (k=1, p=2)', 'location', 'NorthEast');
grid on
hold off
xlabel('Noise level \sigma');
ylabel('MSE(\sigma)');
text_size = 16;
set(gca, 'FontSize', text_size);
set(get(gca,'xlabel'), 'FontSize', text_size);
set(get(gca,'ylabel'), 'FontSize', text_size);
%axis([5, 50, 0.0, 0.55]);
%plot2svg('mse_different_measures.svg', 3);
MSP估计算法
原创fpga和matlab 博主文章分类:MATLAB ©著作权
©著作权归作者所有:来自51CTO博客作者fpga和matlab的原创作品,请联系作者获取转载授权,否则将追究法律责任
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
h264快速运动估计算法
<br />#include "stdio.h"<br />#include "stdlib.h"<br />#include "malloc.h"<br />#include "string.h"<br />#include "sys/timeb.h"<br />#include "math.h"<br />#include "inf.h"<br />#define MIN(a,b) ((a)<(b))?(a):(b);<br />#define MAX(a,b) ((a)>(b))?(a):(b);<b
算法 search distance math.h include