%% 清空环境变量
clc
clear
%% 数据导入
load data1 array_one
load data2 array_two
%% 训练样本(目标向量)
T=[array_one;array_two]';
%% 创建网络
net=newhop(T);
%% 数字1和2的带噪声数字点阵(固定法)
load data1_noisy noisy_array_one
load data2_noisy noisy_array_two
%% 数字1和2的带噪声数字点阵(随机法)
% noisy_array_one=array_one;
% noisy_array_two=array_two;
% for i=1:100
% a=rand;
% if a<0.3
% noisy_array_one(i)=-array_one(i);
% noisy_array_two(i)=-array_two(i);
% end
% end
%% 数字识别
% identify_one=sim(net,10,[],noisy_array_one');
noisy_one={(noisy_array_one)'};
identify_one=sim(net,{10,10},{},noisy_one);
identify_one{10}';
noisy_two={(noisy_array_two)'};
identify_two=sim(net,{10,10},{},noisy_two);
identify_two{10}';
%% 结果显示
Array_one=imresize(array_one,20);
subplot(3,2,1)
imshow(Array_one)
title('标准(数字1)')
Array_two=imresize(array_two,20);
subplot(3,2,2)
imshow(Array_two)
title('标准(数字2)')
subplot(3,2,3)
Noisy_array_one=imresize(noisy_array_one,20);
imshow(Noisy_array_one)
title('噪声(数字1)')
subplot(3,2,4)
Noisy_array_two=imresize(noisy_array_two,20);
imshow(Noisy_array_two)
title('噪声(数字2)')
subplot(3,2,5)
imshow(imresize(identify_one{10}',20))
title('识别(数字1)')
subplot(3,2,6)
imshow(imresize(identify_two{10}',20))
title('识别(数字2)')
离散Hopfield神经网络的联想记忆—数字识别
原创
©著作权归作者所有:来自51CTO博客作者fpga和matlab的原创作品,请联系作者获取转载授权,否则将追究法律责任
下一篇:Mallet算法及滤波器
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
双向联想记忆神经网络
联想记忆网络的研究是神经网络的重要分支,在各种联想记忆网络模型中,由B·Kosko于1988年提出的双向联想记忆(Bidirectional Associative Memory,BAM)网络的应用最...
#define i++ 权值 联想记忆 #include