1.软件版本

matlab2013b

2.系统描述

所谓高阶统计量,通常是指信号的高阶矩,高阶累积量等信号统计信息的统称。在这些高阶统计量中,高阶累积量具有十分重要的重用,不同阶数的累积量可以反映出信号的不同特征,因此高阶累积量往往应用在信号分类,信号调制方式识别等领域。高阶累积量中的二阶累积量和四阶累积量可以有效抑制高斯白噪声的干扰,且对相位偏移具有一定的容错能力,其数学表达式为:

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_matlab

MPSK发送信号为相互独立的同分布序列,则:

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_开发语言_02

 由于噪声的四阶累积量恒为零,噪声与信号独立,因此可以接收信号的高阶累积量可以表示为:

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_信噪比_03

 

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_开发语言_04

3.部分源码

function [c21,c42]=func_csum(yy)
N = length(yy);
sum_C21=0;
sum_C42=0;

for i = 1:100
C20=mean(yy.^2);
C21=mean(abs(yy).^2);
C41=mean((yy.^3).*conj(yy))-3*C20*C21;
C42=mean(abs(yy).^4)-abs(C20)^2-2*C21^2;
sum_C21=sum_C21+C21;
sum_C42=sum_C42+C42;
end

c21=sum_C21/100;
c42=sum_C42/100;


clc;
clear;
close all;
warning off;

%MPSK调制
%参数说明
% y 输出序列
% x 输入序列
% fc 载波频率
% fs 采样频率
% rc 码元速率
% M 调制模式M=2,4,8

x = rand(1,200)>=0.5;
fc = 16e6;
fs = 4*fc;
rc = 2e6;
M = 4;
detafy = 0*pi/6;

[y0,y_test] = func_MPSKgen(x,fc,fs,rc,M,detafy);

%%
%通过信号子空间估计信噪比
%通过高阶累积量估计信噪比
SNR = [0:0.5:20];
R1 = zeros(size(SNR));
R2 = zeros(size(SNR));
for sj = 1:length(SNR)
sj
y = awgn(y0,SNR(sj),'measured');
[c21,c42] = func_csum(y);%高阶累积量
SNRset1 = sqrt(abs(c42)/2)/(c21-0.965*sqrt(abs(c42)))+4;

SNRset2 = func_snr_est(y);
R1(sj) = SNRset1;
R2(sj) = SNRset2;
end

figure;
subplot(121)
plot(SNR,SNR,'r');
hold on
plot(SNR,R1,'o');
grid on
xlabel('SNR');
ylabel('高阶累积量');
legend('标准SNR','估计SNR');
title('高阶累积量估计信噪比');
subplot(122)
plot(SNR,SNR,'r');
hold on
plot(SNR,R2,'o');
grid on
xlabel('SNR');
ylabel('高阶累积量');
legend('标准SNR','估计SNR');
title('信号子空间估计信噪比');

sqrt(sum((SNR-R1).^2)/length(R1))
sqrt(sum((SNR-R2).^2)/length(R2))











4.仿真结论

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_信噪比_05

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_信噪比盲估计_06

 

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_高阶累积量_07

 

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_高阶累积量_08

 

【高阶累积量】基于高阶累积量的信噪比盲估计法的matlab仿真_信噪比盲估计_09

5.参考文献

[1]张安清,章新华.四阶累积量的递推估计及其应用.信号处理,2002,18(1):88~90.A01-151