Description
小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
Input
输入第一行包含两个整数n,k(k+1≤n)。
第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。
Output
输出第一行包含一个整数,为小H可以得到的最大分数。
Sample Input
7 3
4 1 3 4 0 2 3
Sample Output
108
HINT
【样例说明】
在样例中,小H可以通过如下3轮操作得到108分:
1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置
将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数
字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+
3)=36分。
3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个
数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=
20分。
经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。
【数据规模与评分】
:数据满足2≤n≤100000,1≤k≤min(n -1,200)。
传送门
一开始一脸不可做……后面推了推在L~R内取3个点的式子,
很意外地发现了顺序竟然没什么关系。。
试了试发现怎么取顺序都没有关系了。。。.......
具体就比如说取了3个点分成了4段,分别是a,b,c,d,
那么假如说取中间,再分别取左右,价值是:(a+b)(c+d)+ab+cd
假如说从左到右取,价值是:a(b+c+d)+b(c+d)+cd
展开来吧,一样的。。
然后就可以设计一个dp,
f[i][j]表示前i个数字分了j段的最大价值,
有很多种写法,如果认为从左往右取,那么f[i][j]=max{f[k][j-1]+sum[i+1..n]*sum[k+1..i]}
如果是从右往左取,那么f[i][j]=max{f[k][j-1]+sum[1..k]*sum[k+1..i]}
其实都差不多的。。
然后发现是个O(N^2*K)的算法,,很明显啊,斜率优化。。
具体是啥斜率不说了(雾
因为一直WA后面发现是斜率推错了非常气愤。。
怎么这种题都要推错啊喂。。。
(我会告诉你后面我看了hzw的题解才发现错了的嘛??)