大批量生成文字训练集点击打开链接
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
import pickle
import argparse
from argparse import RawTextHelpFormatter
import fnmatch
import os
import cv2
import json
import random
import numpy as np
import shutil
import traceback
import copy
#
# class dataAugmentation(object):
# def __init__(self, noise=True, dilate=True, erode=True):
# self.noise = noise
# self.dilate = dilate
# self.erode = erode
#
# @classmethod
# def add_noise(cls, img):
# for i in range(20): # 添加点噪声
# temp_x = np.random.randint(0, img.shape[0])
# temp_y = np.random.randint(0, img.shape[1])
# img[temp_x][temp_y] = 255
# return img
#
# @classmethod
# def add_erode(cls, img):
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# img = cv2.erode(img, kernel)
# return img
#
# @classmethod
# def add_dilate(cls, img):
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# img = cv2.dilate(img, kernel)
# return img
#
# def do(self, img_list=[]):
# aug_list = copy.deepcopy(img_list)
# for i in range(len(img_list)):
# im = img_list[i]
# if self.noise and random.random() < 0.5:
# im = self.add_noise(im)
# if self.dilate and random.random() < 0.5:
# im = self.add_dilate(im)
# elif self.erode:
# im = self.add_erode(im)
# aug_list.append(im)
# return aug_list
# 对字体图像做等比例缩放
class PreprocessResizeKeepRatio(object):
def __init__(self, width, height):
self.width = width
self.height = height
def do(self, cv2_img):
max_width = self.width
max_height = self.height
cur_height, cur_width = cv2_img.shape[:2]
ratio_w = float(max_width) / float(cur_width)
ratio_h = float(max_height) / float(cur_height)
ratio = min(ratio_w, ratio_h)
new_size = (min(int(cur_width * ratio), max_width),
min(int(cur_height * ratio), max_height))
new_size = (max(new_size[0], 1),
max(new_size[1], 1),)
resized_img = cv2.resize(cv2_img, new_size)
return resized_img
# 查找字体的最小包含矩形
class FindImageBBox(object):
def __init__(self, ):
pass
def do(self, img):
height = img.shape[0]
width = img.shape[1]
v_sum = np.sum(img, axis=0)
h_sum = np.sum(img, axis=1)
left = 0
right = width - 1
top = 0
low = height - 1
# 从左往右扫描,遇到非零像素点就以此为字体的左边界
for i in range(width):
if v_sum[i] > 0:
left = i
break
# 从右往左扫描,遇到非零像素点就以此为字体的右边界
for i in range(width - 1, -1, -1):
if v_sum[i] > 0:
right = i
break
# 从上往下扫描,遇到非零像素点就以此为字体的上边界
for i in range(height):
if h_sum[i] > 0:
top = i
break
# 从下往上扫描,遇到非零像素点就以此为字体的下边界
for i in range(height - 1, -1, -1):
if h_sum[i] > 0:
low = i
break
return (left, top, right, low)
# 把字体图像放到背景图像中
class PreprocessResizeKeepRatioFillBG(object):
def __init__(self, width, height,
fill_bg=False,
auto_avoid_fill_bg=True,
margin=None):
self.width = width
self.height = height
self.fill_bg = fill_bg
self.auto_avoid_fill_bg = auto_avoid_fill_bg
self.margin = margin
@classmethod
def is_need_fill_bg(cls, cv2_img, th=0.5, max_val=255):
image_shape = cv2_img.shape
height, width = image_shape
if height * 3 < width:
return True
if width * 3 < height:
return True
return False
@classmethod
def put_img_into_center(cls, img_large, img_small, ):
width_large = img_large.shape[1]
height_large = img_large.shape[0]
width_small = img_small.shape[1]
height_small = img_small.shape[0]
if width_large < width_small:
raise ValueError("width_large <= width_small")
if height_large < height_small:
raise ValueError("height_large <= height_small")
start_width = (width_large - width_small) // 2
start_height = (height_large - height_small) // 2
img_large[start_height:start_height + height_small,
start_width:start_width + width_small] = img_small
return img_large
def do(self, cv2_img):
# 确定有效字体区域,原图减去边缘长度就是字体的区域
if self.margin is not None:
width_minus_margin = max(2, self.width - self.margin)
height_minus_margin = max(2, self.height - self.margin)
else:
width_minus_margin = self.width
height_minus_margin = self.height
cur_height, cur_width = cv2_img.shape[:2]
if len(cv2_img.shape) > 2:
pix_dim = cv2_img.shape[2]
else:
pix_dim = None
preprocess_resize_keep_ratio = PreprocessResizeKeepRatio(
width_minus_margin,
height_minus_margin)
resized_cv2_img = preprocess_resize_keep_ratio.do(cv2_img)
if self.auto_avoid_fill_bg:
need_fill_bg = self.is_need_fill_bg(cv2_img)
if not need_fill_bg:
self.fill_bg = False
else:
self.fill_bg = True
## should skip horizontal stroke
if not self.fill_bg:
ret_img = cv2.resize(resized_cv2_img, (width_minus_margin,
height_minus_margin))
else:
if pix_dim is not None:
norm_img = np.zeros((height_minus_margin,
width_minus_margin,
pix_dim),
np.uint8)
else:
norm_img = np.zeros((height_minus_margin,
width_minus_margin),
np.uint8)
# 将缩放后的字体图像置于背景图像中央
ret_img = self.put_img_into_center(norm_img, resized_cv2_img)
if self.margin is not None:
if pix_dim is not None:
norm_img = np.zeros((self.height,
self.width,
pix_dim),
np.uint8)
else:
norm_img = np.zeros((self.height,
self.width),
np.uint8)
ret_img = self.put_img_into_center(norm_img, ret_img)
return ret_img
# 检查字体文件是否可用
class FontCheck(object):
def __init__(self, lang_chars, width=32, height=32):
self.lang_chars = lang_chars
self.width = width
self.height = height
def do(self, font_path):
width = self.width
height = self.height
try:
for i, char in enumerate(self.lang_chars):
img = Image.new("RGB", (width, height), "black") # 黑色背景
draw = ImageDraw.Draw(img)
font = ImageFont.truetype(font_path, int(width * 0.9), )
# 白色字体
draw.text((0, 0), char, (255, 255, 255),
font=font)
data = list(img.getdata())
sum_val = 0
for i_data in data:
sum_val += sum(i_data)
if sum_val < 2:
return False
except:
print("fail to load:%s" % font_path)
traceback.print_exc(file=sys.stdout)
return False
return True
# 生成字体图像
class Font2Image(object):
def __init__(self,
width, height,
need_crop, margin):
self.width = width
self.height = height
self.need_crop = need_crop
self.margin = margin
def do(self, font_path, char, rotate=0):
find_image_bbox = FindImageBBox()
# 黑色背景
img = Image.new("RGB", (self.width, self.height), "black")
draw = ImageDraw.Draw(img)
font = ImageFont.truetype(font_path, int(self.width * 0.7), )
# 白色字体
draw.text((0, 0), char, (255, 255, 255),
font=font)
if rotate != 0:
img = img.rotate(rotate)
data = list(img.getdata())
sum_val = 0
for i_data in data:
sum_val += sum(i_data)
if sum_val > 2:
np_img = np.asarray(data, dtype='uint8')
np_img = np_img[:, 0]
np_img = np_img.reshape((self.height, self.width))
cropped_box = find_image_bbox.do(np_img)
left, upper, right, lower = cropped_box
np_img = np_img[upper: lower + 1, left: right + 1]
if not self.need_crop:
preprocess_resize_keep_ratio_fill_bg = \
PreprocessResizeKeepRatioFillBG(self.width, self.height,
fill_bg=False,
margin=self.margin)
np_img = preprocess_resize_keep_ratio_fill_bg.do(np_img)
# cv2.imwrite(path_img, np_img)
return np_img
else:
print("img doesn't exist.")
# 注意,chinese_labels里面的映射关系是:(ID:汉字)
def get_label_dict():
with open('chinese_labels', 'rb') as f:
label_dict = pickle.load(f)
f.close()
return label_dict
def args_parse():
# 解析输入参数
parser = argparse.ArgumentParser()
parser.add_argument('--out_dir', dest='out_dir',
default="./dataImage",
help='write a caffe dir')
parser.add_argument('--font_dir', dest='font_dir',
default="./chinese_fonts",
help='font dir to to produce images')
parser.add_argument('--test_ratio', dest='test_ratio',
default=0.2,
help='test dataset size')
parser.add_argument('--width', dest='width',
default=100,
help='width')
parser.add_argument('--height', dest='height',
default=100,
help='height')
parser.add_argument('--no_crop', dest='no_crop',
default=True,
help='', action='store_true')
parser.add_argument('--margin', dest='margin',
default=10,
help='', )
parser.add_argument('--rotate', dest='rotate',
default=0,
help='max rotate degree 0-45')
parser.add_argument('--rotate_step', dest='rotate_step',
default=1,
help='rotate step for the rotate angle')
parser.add_argument('--need_aug', dest='need_aug',
default=True,
help='need data augmentation', action='store_true')
args = vars(parser.parse_args())
return args
if __name__ == "__main__":
# description = '''
# python gen_printed_char.py --out_dir ./dataset \
# --font_dir ./chinese_fonts \
# --width 30 --height 30 --margin 4 --rotate 30 --rotate_step 1
# '''
options = args_parse()
out_dir = os.path.expanduser(options['out_dir'])
font_dir = os.path.expanduser(options['font_dir'])
test_ratio = float(options['test_ratio'])
width = int(options['width'])
height = int(options['height'])
need_crop = not options['no_crop']
margin = int(options['margin'])
rotate = int(options['rotate'])
need_aug = options['need_aug']
rotate_step = int(options['rotate_step'])
train_image_dir_name = "train"
test_image_dir_name = "test"
# 将dataset分为train和test两个文件夹分别存储
train_images_dir = os.path.join(out_dir, train_image_dir_name)
test_images_dir = os.path.join(out_dir, test_image_dir_name)
if os.path.isdir(train_images_dir):
shutil.rmtree(train_images_dir)
os.makedirs(train_images_dir)
if os.path.isdir(test_images_dir):
shutil.rmtree(test_images_dir)
os.makedirs(test_images_dir)
# 将汉字的label读入,得到(ID:汉字)的映射表label_dict
label_dict = get_label_dict()
char_list = [] # 汉字列表
value_list = [] # label列表
for (value, chars) in label_dict.items():
print(value, chars)
char_list.append(chars)
value_list.append(value)
# 合并成新的映射关系表:(汉字:ID)
lang_chars = dict(zip(char_list, value_list))
font_check = FontCheck(lang_chars)
if rotate < 0:
roate = - rotate
if rotate > 0 and rotate <= 45:
all_rotate_angles = []
for i in range(0, rotate + 1, rotate_step):
all_rotate_angles.append(i)
for i in range(-rotate, 0, rotate_step):
all_rotate_angles.append(i)
# print(all_rotate_angles)
# 对于每类字体进行小批量测试
verified_font_paths = []
## search for file fonts
for font_name in os.listdir(font_dir):
path_font_file = os.path.join(font_dir, font_name)
if font_check.do(path_font_file):
verified_font_paths.append(path_font_file)
font2image = Font2Image(width, height, need_crop, margin)
for (char, value) in lang_chars.items(): # 外层循环是字
image_list = []
print(char, value)
# char_dir = os.path.join(images_dir, "%0.5d" % value)
for j, verified_font_path in enumerate(verified_font_paths): # 内层循环是字体
if rotate == 0:
image = font2image.do(verified_font_path, char)
image_list.append(image)
else:
for k in all_rotate_angles:
image = font2image.do(verified_font_path, char, rotate=k)
image_list.append(image)
# if need_aug:
# data_aug = dataAugmentation()
# image_list = data_aug.do(image_list)
test_num = len(image_list) * test_ratio
random.shuffle(image_list) # 图像列表打乱
count = 0
for i in range(len(image_list)):
img = image_list[i]
# print(img.shape)
# if count < test_num:
# char_dir = os.path.join(test_images_dir, "%0.5d" % value)
# else:
# char_dir = os.path.join(train_images_dir, "%0.5d" % value)
#
# if not os.path.isdir(char_dir):
# os.makedirs(char_dir)
path_image = os.path.join(test_images_dir, "%d.png" % value)
cv2.imwrite(path_image, img)
# count += 1