OpenCV实现人体姿态估计(人体关键点检测)OpenPose


 

OpenPose人体姿态识别项目是美国卡耐基梅隆大学(CMU)基于卷积神经网络和监督学习并以Caffe为框架开发的开源库。可以实现人体动作、面部表情、手指运动等姿态估计。适用于单人和多人,具有极好的鲁棒性。是世界上首个基于深度学习的实时多人二维姿态估计应用,基于它的实例如雨后春笋般涌现。

其理论基础来自Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ,是CVPR 2017的一篇论文,作者是来自CMU感知计算实验室的曹哲(http://people.eecs.berkeley.edu/~zhecao/#top),Tomas Simon,Shih-En Wei,Yaser Sheikh 。

人体姿态估计技术在体育健身、动作采集、3D试衣、舆情监测等领域具有广阔的应用前景,人们更加熟悉的应用就是抖音尬舞机。

OpenPose的效果并不怎么好,强烈推荐《​​2D Pose人体关键点检测(Python/Android /C++ Demo)​​​ 》​​2D Pose人体关键点实时检测(Python/Android /C++ Demo)_pan_jinquan的博客-​​,提供了C++推理代码和Android Demo

人体关键点检测需要用到人体检测,请查看鄙人另一篇博客:​​2D Pose人体关键点实时检测(Python/Android /C++ Demo)_pan_jinquan的博客-​

OpenCV实现人体姿态估计(人体关键点检测)OpenPose_OpenPose




OpenCV实现人体姿态估计(人体关键点检测)OpenPose_OpenPose_02

OpenPose项目Github链接:https:///CMU-Perceptual-Computing-Lab/openpose

OpenCV实现的Demo链接:​​https:///PanJinquan/opencv-learning-tutorials/blob/master/opencv_dnn_pro/openpose-opencv/openpose_for_image_test.py​​)


1、实现原理

输入一幅图像,经过卷积网络提取特征,得到一组特征图,然后分成两个岔路,分别使用 CNN网络提取Part Confidence Maps 和 Part Affinity Fields;

OpenCV实现人体姿态估计(人体关键点检测)OpenPose_人体关键点检测_03


得到这两个信息后,我们使用图论中的 Bipartite Matching(偶匹配) 求出Part Association,将同一个人的关节点连接起来,由于PAF自身的矢量性,使得生成的偶匹配很正确,最终合并为一个人的整体骨架;

最后基于PAFs求Multi-Person Parsing—>把Multi-person parsing问题转换成graphs问题—>​​Hungarian Algorithm(匈牙利算法)​​ (匈牙利算法是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。)


2、实现神经网络

OpenCV实现人体姿态估计(人体关键点检测)OpenPose_python_04

阶段一:VGGNet的前10层用于为输入图像创建特征映射。

阶段二:使用2分支多阶段CNN,其中第一分支预测身体部位位置(例如肘部,膝部等)的一组2D置信度图(S)。 如下图所示,给出关键点的置信度图和亲和力图 - 左肩。

OpenCV实现人体姿态估计(人体关键点检测)OpenPose_2d_05

第二分支预测一组部分亲和度的2D矢量场(L),其编码部分之间的关联度。 如下图所示,显示颈部和左肩之间的部分亲和力。

OpenCV实现人体姿态估计(人体关键点检测)OpenPose_python_06

阶段三: 通过贪心推理解析置信度和亲和力图,对图像中的所有人生成2D关键点。


3.OpenCV-OpenPose实现推理代码

# -*-coding: utf-8 -*-
"""
@Project: python-learning-notes
@File : openpose_for_image_test.py
@Author : panjq
@E-mail : pan_jinquan@
@Date : 2019-07-29 21:50:17
"""

import cv2 as cv
import os
import glob

BODY_PARTS = {"Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
"LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
"RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,
"LEye": 15, "REar": 16, "LEar": 17, "Background": 18}

POSE_PAIRS = [["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],
["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],
["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"]]


def detect_key_point(model_path, image_path, out_dir, inWidth=368, inHeight=368, threshhold=0.2):
net = cv.dnn.readNetFromTensorflow(model_path)
frame = cv.imread(image_path)
frameWidth = frame.shape[1]
frameHeight = frame.shape[0]
scalefactor = 2.0
net.setInput(
cv.dnn.blobFromImage(frame, scalefactor, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
out = net.forward()
out = out[:, :19, :, :] # MobileNet output [1, 57, -1, -1], we only need the first 19 elements
assert (len(BODY_PARTS) == out.shape[1])
points = []
for i in range(len(BODY_PARTS)):
# Slice heatmap of corresponging body's part.
heatMap = out[0, i, :, :]
# Originally, we try to find all the local maximums. To simplify a sample
# we just find a global one. However only a single pose at the same time
# could be detected this way.
_, conf, _, point = cv.minMaxLoc(heatMap)
x = (frameWidth * point[0]) / out.shape[3]
y = (frameHeight * point[1]) / out.shape[2]
# Add a point if it's confidence is higher than threshold.
points.append((int(x), int(y)) if conf > threshhold else None)
for pair in POSE_PAIRS:
partFrom = pair[0]
partTo = pair[1]
assert (partFrom in BODY_PARTS)
assert (partTo in BODY_PARTS)

idFrom = BODY_PARTS[partFrom]
idTo = BODY_PARTS[partTo]

if points[idFrom] and points[idTo]:
cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)

t, _ = net.getPerfProfile()
freq = cv.getTickFrequency() / 1000
cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))

cv.imwrite(os.path.join(out_dir, os.path.basename(image_path)), frame)
cv.imshow('OpenPose using OpenCV', frame)
cv.waitKey(0)


def detect_image_list_key_point(image_dir, out_dir, inWidth=480, inHeight=480, threshhold=0.3):
image_list = glob.glob(image_dir)
for image_path in image_list:
detect_key_point(image_path, out_dir, inWidth, inHeight, threshhold)


if __name__ == "__main__":
model_path = "pb/graph_opt.pb"
# image_path = "body/*.jpg"
out_dir = "result"
# detect_image_list_key_point(image_path,out_dir)
image_path = "./test.jpg"
detect_key_point(model_path, image_path, out_dir, inWidth=368, inHeight=368, threshhold=0.05)

OpenCV实现人体姿态估计(人体关键点检测)OpenPose_人体姿态估计_07

参考资料:

[1].​​Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)_不脱发的程序猿​