Pytorch骨干网络性能测试

测试平台:

  • Intel® Core™ i7-8700 CPU @ 3.20GHz × 12
  • GeForce RTX 2070/PCIe/SSE2

backbone

input size

output size

run time /ms

GPU/MiB

mobilenet_v2

[1,3,112,112]

512

4.743

910

reset18

[1,3,112,112]

512

2.372

960

resnet34

[1,3,112,112]

512

3.974

1010

vgg16

[1,3,112,112]

512

3.844

1460

squeezenet1_0

[1,3,112,112]

512

2.103

897

squeezenet1_1

[1,3,112,112]

512

2.095

891

mnasnet1_0

[1,3,112,112]

512

4.248

909

shufflenet_v2_x1_0

[1,3,112,112]

512

5.449

891

inception_v3

[1,3,112,112]

512

12.341

1203

googlenet

[1,3,112,112]

512

5.752

935

MixNet_S

[1,3,112,112]

512

8.260

930

MixNet_M

[1,3,112,112]

512

9.914

960

MixNet_L

[1,3,112,112]

512

10.020

990

 

 

 

 

 

测试代码:

# -*-coding: utf-8 -*-
"""
@Project: pytorch-learning-tutorials
@File : main.py
@Author : panjq
@E-mail : pan_jinquan@163.com
@Date : 2019-06-27 13:46:20
"""
import torch
from torchvision import models
from utils import debug
import performance.core.mixnet as mixnet

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = 'cpu'
print("-----device:{}".format(device))
print("-----Pytorch version:{}".format(torch.__version__))


# @debug.run_time_decorator()
def model_forward(model, input_tensor):
T0 = debug.TIME()
out = model(input_tensor)
torch.cuda.synchronize()
T1 = debug.TIME()
time = debug.RUN_TIME(T1 - T0)
return out, time


def iter_model(model, input_tensor, iter):
out, time = model_forward(model, input_tensor)
all_time = 0
for i in range(iter):
out, time = model_forward(model, input_tensor)
all_time += time
return all_time


def squeezenet1_0(input_tensor, out_features, iter=10):
model = models.squeezenet.squeezenet1_0(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("squeezenet1_0,mean run time :{:.3f}".format(all_time / iter))


def squeezenet1_1(input_tensor, out_features, iter=10):
model = models.squeezenet.squeezenet1_1(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("squeezenet1_1,mean run time :{:.3f}".format(all_time / iter))


def mnasnet1_0(input_tensor, out_features, iter=10):
model = models.mnasnet.mnasnet1_0(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("mnasnet1_0,mean run time :{:.3f}".format(all_time / iter))


def shufflenet_v2_x1_0(input_tensor, out_features, iter=10):
model = models.shufflenetv2.shufflenet_v2_x1_0(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("shufflenet_v2_x1_0,mean run time :{:.3f}".format(all_time / iter))


def mobilenet_v2(input_tensor, out_features, iter=10):
model = models.mobilenet_v2(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("mobilenet_v2,mean run time :{:.3f}".format(all_time / iter))


def resnet18(input_tensor, out_features, iter=10):
model = models.resnet18(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("reset18,mean run time :{:.3f}".format(all_time / iter))


def resnet34(input_tensor, out_features, iter=10):
model = models.resnet34(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("resnet34,mean run time :{:.3f}".format(all_time / iter))


def vgg16(input_tensor, out_features, iter=10):
model = models.vgg16(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("vgg16,mean run time :{:.3f}".format(all_time / iter))


def MixNet_L(input_tensor, input_size, out_features, iter=10):
model = mixnet.MixNet_L(input_size, out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("MixNet_L,mean run time :{:.3f}".format(all_time / iter))


def MixNet_M(input_tensor, input_size, out_features, iter=10):
model = mixnet.MixNet_M(input_size, out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("MixNet_M,mean run time :{:.3f}".format(all_time / iter))


def MixNet_S(input_tensor, input_size, out_features, iter=10):
model = mixnet.MixNet_S(input_size, out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("MixNet_S,mean run time :{:.3f}".format(all_time / iter))


def inception_v3(input_tensor, out_features, iter=10):
model = models.inception.inception_v3(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("inception_v3,mean run time :{:.3f}".format(all_time / iter))

def googlenet(input_tensor, out_features, iter=10):
model = models.googlenet(pretrained=False, num_classes=out_features).to(device)
model.eval()
all_time = iter_model(model, input_tensor, iter)
print("googlenet,mean run time :{:.3f}".format(all_time / iter))

if __name__ == "__main__":
input_size = [112, 112]
out_features = 512
input_tensor = torch.randn(1, 3, input_size[0], input_size[1]).to(device)
print('input_tensor:', input_tensor.shape)
iter = 10000
# mobilenet_v2(input_tensor, out_features, iter)
# resnet18(input_tensor, out_features, iter)
# resnet34(input_tensor, out_features, iter)
# vgg16(input_tensor, out_features, iter)
# squeezenet1_0(input_tensor, out_features, iter)
# squeezenet1_1(input_tensor, out_features, iter)
# inception_v3(input_tensor, out_features, iter)
googlenet(input_tensor, out_features, iter)

# mnasnet1_0(input_tensor, out_features, iter)
# shufflenet_v2_x1_0(input_tensor, out_features, iter)
# MixNet_S(input_tensor, input_size, out_features, iter)
# MixNet_M(input_tensor, input_size, out_features, iter)
# MixNet_L(input_tensor, input_size, out_features, iter)