435. Non-overlapping Intervals
原创
©著作权归作者所有:来自51CTO博客作者mb6304a73bed12a的原创作品,请联系作者获取转载授权,否则将追究法律责任
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval’s end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders “touching” but they don’t overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ]
Output: 1
Explanation:
Example 2:
Input: [ [1,2], [1,2], [1,2] ]
Output: 2
Explanation:
Example 3:
Input: [ [1,2], [2,3] ]
Output: 0
Explanation:
笨啊,思考了一会发现不会,so参考了其他人的思路
按end排序,用一个变量记录当前end的最大值,如果后面的interval能和前面的interval兼容,则加入集合,并扩大end的最大值,否则不兼容,计数加一。
程序还算好写,用了一个lambda表达式,和sort排序,Python代码:
# Definition for an interval.
class Interval(object):
def __init__(self, s=0, e=0):
self.start = s
self.end = e
class Solution(object):
def eraseOverlapIntervals(self, intervals):
"""
:type intervals: List[Interval]
:rtype: int
"""
if not intervals:
return 0
intervals.sort(key = lambda i : i.end)
count = 0
end = intervals[0].end
length = len(intervals)
for i in range(1, length):
if intervals[i].start >= end:
end = intervals[i].end
else :
count += 1
return count
# arr = [ [1,2], [2,3], [3,4], [1,3] ]
arr = [ [1,2], [2,3] ]
intervals = []
for i in arr:
intervals.append(Interval(i[0], i[1]))
r = Solution().eraseOverlapIntervals(intervals)
print(r)