Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
[9,9,4],
[6,6,8],
[2,1,1]
]

Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
[3,4,5],
[3,2,6],
[2,2,1]
]

Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Solution:
DFS to go through all nodes and use another array to cache all the visited node, incase we revisit again. reduce alot of unnecessnary operations. Time complixity is O(nm) .

class Solution {
public int longestIncreasingPath(int[][] matrix) {
if(matrix.length<=0 || matrix[0].length <=0)
return 0;
int max=0, n = matrix.length, m = matrix[0].length;
int [][] cache = new int[n][m];
for(int i=0;i<matrix.length;i++){
for(int j=0;j<matrix[0].length;j++) {
max = Math.max(max, maxLen(matrix, Integer.MIN_VALUE, i, j, cache));
}
}
return max;
}

public int maxLen(int[][] matrix, int min, int r, int c, int[][] cache) {
if(r<0 || c<0 || r>=matrix.length || c>= matrix[0].length) {
return 0;
}
if(matrix[r][c] <= min) {
return 0;
}
if(cache[r][c] != 0) {
return cache[r][c];
}
min = matrix[r][c];
int up = maxLen(matrix, min, r-1, c, cache) + 1;
int left = maxLen(matrix, min, r, c-1, cache) + 1;
int right = maxLen(matrix, min, r, c+1, cache) + 1;
int down = maxLen(matrix, min, r+1, c, cache) + 1;
cache[r][c] = Math.max(up, Math.max(left, Math.max(right,down)));
return