一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
目录
- 一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
1.Matlab实现SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:大学生课程设计、期末大作业和毕业设计。
程序设计
- 完整程序和数据下载私信博主回复一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测Matlab)。
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% 参数设置
fun = @getObjValue; % 目标函数
dim = 2; % 优化参数个数
lb = [0.1, 0.1]; % 优化参数目标下限
ub = [ 800, 800]; % 优化参数目标上限
pop = 20; % 种群数量
Max_iteration = 30; % 最大迭代次数
%% 优化算法
[Best_score,Best_pos, curve] = SSA(pop, Max_iteration, lb, ub, dim, fun);
%% 获取最优参数
bestc = Best_pos(1, 1);
bestg = Best_pos(1, 2);