Mysql 官网关于redo日志的解释:​​https://dev.mysql.com/doc/refman/5.7/en/innodb-redo-log.html​​​

重做日志是一种基于磁盘的数据结构,用于在崩溃恢复期间纠正不完整事务写入的数据。在正常的操作过程中,重做日志对SQL语句或低级API调用产生的更改表数据的请求进行编码。在意外关闭之前未完成数据文件更新的修改将在初始化期间和在接受连接之前自动重播。关于重做日志在崩溃恢复中的作用,请参见章节14.19.2,“InnoDB恢复”。
默认情况下,重做日志在磁盘上由两个名为ib_logfil0和ib_logfile1的文件物理表示。MySQL以循环的方式写入重做日志文件。重做日志中的数据按照受影响的记录进行编码;这些数据统称为重做。通过重做日志的数据通过一个不断增加的LSN值来表示。

Redo 的类型
重做日志(redo log)用来保证事务的持久性,即事务ACID中的D。实际上它可以分为以下两种类型:

物理Redo日志
逻辑Redo日志
在InnoDB存储引擎中,大部分情况下 Redo是物理日志,记录的是数据页的物理变化。而逻辑Redo日志,不是记录页面的实际修改,而是记录修改页面的一类操作,比如新建数据页时,需要记录逻辑日志。关于逻辑Redo日志涉及更加底层的内容,这里我们只需要记住绝大数情况下,Redo是物理日志即可,DML对页的修改操作,均需要记录Redo.

Redo 的作用
Redo log的主要作用是用于数据库的崩溃恢复

Redo 的组成
Redo log可以简单分为以下两个部分:

一是内存中重做日志缓冲 (redo log buffer),是易失的,在内存中
二是重做日志文件 (redo log file),是持久的,保存在磁盘中
什么时候写Redo?
上面那张图简单地体现了Redo的写入流程,这里再细说下写入Redo的时机:

在数据页修改完成之后,在脏页刷出磁盘之前,写入redo日志。注意的是先修改数据,后写日志
redo日志比数据页先写回磁盘
聚集索引、二级索引、undo页面的修改,均需要记录Redo日志。

下面以一个更新事务为例,宏观上把握redo log 流转过程,如下图所示:
第一步:先将原始数据从磁盘中读入内存中来,修改数据的内存拷贝
第二步:生成一条重做日志并写入redo log buffer,记录的是数据被修改后的值
第三步:当事务commit时,将redo log buffer中的内容刷新到 redo log file,对 redo log file采用追加写的方式
第四步:定期将内存中修改的数据刷新到磁盘中​

redo如何保证 事务的持久性?
InnoDB是事务的存储引擎,其通过Force Log at Commit 机制实现事务的持久性,即当事务提交时,先将 redo log buffer 写入到 redo log file 进行持久化,待事务的commit操作完成时才算完成。这种做法也被称为 Write-Ahead Log(预先日志持久化),在持久化一个数据页之前,先将内存中相应的日志页持久化。​

为了保证每次日志都写入redo log file,在每次将redo buffer写入redo log file之后,默认情况下,InnoDB存储引擎都需要调用一次 fsync操作,因为重做日志打开并没有 O_DIRECT选项,所以重做日志先写入到文件系统缓存。为了确保重做日志写入到磁盘,必须进行一次 fsync操作。fsync是一种系统调用操作,其fsync的效率取决于磁盘的性能,因此磁盘的性能也影响了事务提交的性能,也就是数据库的性能。
(O_DIRECT选项是在Linux系统中的选项,使用该选项后,对文件进行直接IO操作,不经过文件系统缓存,直接写入磁盘)​​

上面提到的Force Log at Commit机制就是靠InnoDB存储引擎提供的参数 innodb_flush_log_at_trx_commit来控制的,该参数可以控制 redo log刷新到磁盘的策略,设置该参数值也可以允许用户设置非持久性的情况发生,具体如下:

当设置参数为1时,(默认为1),表示事务提交时必须调用一次 fsync 操作,最安全的配置,保障持久性
当设置参数为2时,则在事务提交时只做 write 操作,只保证将redo log buffer写到系统的页面缓存中,不进行fsync操作,因此如果MySQL数据库宕机时 不会丢失事务,但操作系统宕机则可能丢失事务
当设置参数为0时,表示事务提交时不进行写入redo log操作,这个操作仅在master thread 中完成,而在master thread中每1秒进行一次重做日志的fsync操作,因此实例 crash 最多丢失1秒钟内的事务。(master thread是负责将缓冲池中的数据异步刷新到磁盘,保证数据的一致性)
fsync和write操作实际上是系统调用函数,在很多持久化场景都有使用到,比如 Redis 的AOF持久化中也使用到两个函数。fsync操作 将数据提交到硬盘中,强制硬盘同步,将一直阻塞到写入硬盘完成后返回,大量进行fsync操作就有性能瓶颈,而write操作将数据写到系统的页面缓存后立即返回,后面依靠系统的调度机制将缓存数据刷到磁盘中去,其顺序是user buffer——> page cache——>disk。

undo log
undo log的定义
undo log主要记录的是数据的逻辑变化,为了在发生错误时回滚之前的操作,需要将之前的操作都记录下来,然后在发生错误时才可以回滚。

undo log的作用
undo是一种逻辑日志,有两个作用:​

用于事务的回滚
MVCC
关于MVCC(多版本并发控制)的内容这里就不多说了,本文重点关注undo log用于事务的回滚。

undo日志,只将数据库逻辑地恢复到原来的样子,在回滚的时候,它实际上是做的相反的工作,比如一条INSERT ,对应一条 DELETE,对于每个UPDATE,对应一条相反的 UPDATE,将修改前的行放回去。undo日志用于事务的回滚操作进而保障了事务的原子性。

undo log的写入时机
DML操作修改聚簇索引前,记录undo日志
二级索引记录的修改,不记录undo日志
需要注意的是,undo页面的修改,同样需要记录redo日志。

undo的存储位置
在InnoDB存储引擎中,undo存储在回滚段(Rollback Segment)中,每个回滚段记录了1024个undo log segment,而在每个undo log segment段中进行undo 页的申请,在5.6以前,Rollback Segment是在共享表空间里的,5.6.3之后,可通过 innodb_undo_tablespace设置undo存储的位置。

undo的类型
在InnoDB存储引擎中,undo log分为:

insert undo log
update undo log
insert undo log是指在insert 操作中产生的undo log,因为insert操作的记录,只对事务本身可见,对其他事务不可见。故该undo log可以在事务提交后直接删除,不需要进行purge操作。

而update undo log记录的是对delete 和update操作产生的undo log,该undo log可能需要提供MVCC机制,因此不能再事务提交时就进行删除。提交时放入undo log链表,等待purge线程进行最后的删除。

补充:purge线程两个主要作用是:清理undo页和清除page里面带有Delete_Bit标识的数据行。在InnoDB中,事务中的Delete操作实际上并不是真正的删除掉数据行,而是一种Delete Mark操作,在记录上标识Delete_Bit,而不删除记录。是一种”假删除”,只是做了个标记,真正的删除工作需要后台purge线程去完成。

undo log 是否是redo log的逆过程?
undo log 是否是redo log的逆过程?其实从前文就可以得出答案了,undo log是逻辑日志,对事务回滚时,只是将数据库逻辑地恢复到原来的样子,而redo log是物理日志,记录的是数据页的物理变化,显然undo log不是redo log的逆过程。

版权声明:本文为博主原创文章,未经博主允许不得转载。

MYSQL