点击打开链接
维护一次幂二次幂三次幂的三个区间和 再维护乘法加法赋值的三个lazy标记
几个幂次和之间是有公式的 如图
而lazy标记的使用也需要技巧
首先赋值的优先级最高 只要赋值操作 其他两种操作直接舍弃 而加法和乘法虽然优先级一样 但是乘法操作不止影响乘法lazy 也影响加法lazy 具体见代码
using namespace std;
struct node
{
int l;
int r;
ll val1;
ll val2;
ll val3;
ll laz1;
ll laz2;
ll laz3;
};
node tree[400010];
int n;
void changeI(int cur,ll val)
{
ll len;
len=tree[cur].r-tree[cur].l+1;
tree[cur].val3=(tree[cur].val3+3*val*tree[cur].val2+3*val*val*tree[cur].val1+val*val*val*len)%M;
tree[cur].val2=(tree[cur].val2+2*val*tree[cur].val1+val*val*len)%M;
tree[cur].val1=(tree[cur].val1+val*len)%M;
return;
}
void changeII(int cur,ll val)
{
tree[cur].val1=(tree[cur].val1*val)%M;
tree[cur].val2=(tree[cur].val2*val*val)%M;
tree[cur].val3=(tree[cur].val3*val*val*val)%M;
return;
}
void changeIII(int cur,ll val)
{
ll len;
len=tree[cur].r-tree[cur].l+1;
tree[cur].val1=(val*len)%M;
tree[cur].val2=(((val*val)%M)*len)%M;
tree[cur].val3=(((val*val)%M)*((val*len)%M))%M;
return;
}
void pushup(int cur)
{
tree[cur].val1=(tree[2*cur].val1+tree[2*cur+1].val1)%M;
tree[cur].val2=(tree[2*cur].val2+tree[2*cur+1].val2)%M;
tree[cur].val3=(tree[2*cur].val3+tree[2*cur+1].val3)%M;
return;
}
void pushdown(int cur)
{
if(tree[cur].laz3!=-1)
{
changeIII(2*cur,tree[cur].laz3);
tree[2*cur].laz3=tree[cur].laz3;
changeIII(2*cur+1,tree[cur].laz3);
tree[2*cur+1].laz3=tree[cur].laz3;
tree[2*cur].laz1=0,tree[2*cur+1].laz1=0;
tree[2*cur].laz2=1,tree[2*cur+1].laz2=1;
tree[cur].laz3=-1;
}
if(tree[cur].laz1!=0||tree[cur].laz2!=1)
{
//tree[2*cur].laz1=(tree[2*cur].laz1*tree[cur].laz2+tree[cur].laz1)%M;
changeII(2*cur,tree[cur].laz2);
changeI(2*cur,tree[cur].laz1);
tree[2*cur].laz2=(tree[2*cur].laz2*tree[cur].laz2)%M;
tree[2*cur].laz1=(tree[2*cur].laz1*tree[cur].laz2+tree[cur].laz1)%M;
changeII(2*cur+1,tree[cur].laz2);
changeI(2*cur+1,tree[cur].laz1);
tree[2*cur+1].laz2=(tree[2*cur+1].laz2*tree[cur].laz2)%M;
tree[2*cur+1].laz1=(tree[2*cur+1].laz1*tree[cur].laz2+tree[cur].laz1)%M;
tree[cur].laz1=0;
tree[cur].laz2=1;
}
return;
}
void build(int l,int r,int cur)
{
int m;
tree[cur].l=l;
tree[cur].r=r;
tree[cur].val1=0;
tree[cur].val2=0;
tree[cur].val3=0;
tree[cur].laz1=0;
tree[cur].laz2=1;
tree[cur].laz3=-1;
if(l==r) return;
m=(l+r)/2;
build(l,m,2*cur);
build(m+1,r,2*cur+1);
return;
}
void update(int op,int pl,int pr,ll val,int cur)
{
if(pl<=tree[cur].l&&tree[cur].r<=pr)
{
if(op==1)
{
changeI(cur,val);
tree[cur].laz1=(tree[cur].laz1+val)%M;
}
else if(op==2)
{
changeII(cur,val);
tree[cur].laz2=(tree[cur].laz2*val)%M;
tree[cur].laz1=(tree[cur].laz1*val)%M;
}
else
{
changeIII(cur,val);
tree[cur].laz1=0,tree[cur].laz2=1,tree[cur].laz3=val;
}
return;
}
pushdown(cur);
if(pl<=tree[2*cur].r) update(op,pl,pr,val,2*cur);
if(pr>=tree[2*cur+1].l) update(op,pl,pr,val,2*cur+1);
pushup(cur);
return;
}
ll query(int tp,int pl,int pr,int cur)
{
ll res;
if(pl<=tree[cur].l&&tree[cur].r<=pr)
{
if(tp==1) return tree[cur].val1;
else if(tp==2) return tree[cur].val2;
else return tree[cur].val3;
}
pushdown(cur);
res=0;
if(pl<=tree[2*cur].r) res=(res+query(tp,pl,pr,2*cur))%M;
if(pr>=tree[2*cur+1].l) res=(res+query(tp,pl,pr,2*cur+1))%M;
return res;
}
int main()
{
ll val;
int q,op,l,r;
while(1)
{
scanf("%d%d",&n,&q);
if(n==0&&q==0) break;
build(1,n,1);
while(q--)
{
scanf("%d%d%d%lld",&op,&l,&r,&val);
if(op!=4) update(op,l,r,val,1);
else printf("%lld\n",query(val,l,r,1)%M);
}
}
return 0;
}