tokio 官方给了一个完整的例子:手动构建 runtime ,利用 block_on 来运行多个任务。tokio 的任务是由 ​​tokio::spawn​​​ 之类的函数产生的 ​​JoinHandle​​​ 类型,而且是个 ​​Future​​ 。

而下面利用 ​​#[tokio::main]​​ 和 await 编写了等价的版本(为了直观对比任务完成的实际顺序和总耗时,我对 sleep 的时间做了一些简化):

use std::time::Instant;
use tokio::time::{sleep, Duration};

#[tokio::main]
async fn main() -> std::io::Result<()> {
let now = Instant::now();

let mut handles = Vec::with_capacity(10);
for i in 0..10 {
handles.push(tokio::spawn(my_bg_task(i)));
}

// Do something time-consuming while the background tasks execute.
std::thread::sleep(Duration::from_millis(120));
println!("Finished time-consuming task.");

// Wait for all of them to complete.
for handle in handles {
handle.await?;
}

println!("总耗时:{} ms", now.elapsed().as_millis());
Ok(())
}

async fn my_bg_task(i: u64) {
let millis = 100;
println!("Task {} sleeping for {} ms.", i, millis);
sleep(Duration::from_millis(millis)).await;
println!("Task {} stopping.", i);
}

输出结果:

Task 0 sleeping for 100 ms.
Task 1 sleeping for 100 ms.
Task 2 sleeping for 100 ms.
Task 3 sleeping for 100 ms.
Task 4 sleeping for 100 ms.
Task 5 sleeping for 100 ms.
Task 6 sleeping for 100 ms.
Task 7 sleeping for 100 ms.
Task 8 sleeping for 100 ms.
Task 9 sleeping for 100 ms.
Task 9 stopping.
Task 0 stopping.
Task 1 stopping.
Task 2 stopping.
Task 3 stopping.
Task 4 stopping.
Task 5 stopping.
Task 6 stopping.
Task 7 stopping.
Task 8 stopping.
Finished time-consuming task.
总耗时:120 ms

如果把主线程的的 sleep 时间改成 100 ms:​​std::thread::sleep(Duration::from_millis(100));​​ 则产生下面的结果:

Task 0 sleeping for 100 ms.
Task 1 sleeping for 100 ms.
Task 2 sleeping for 100 ms.
Task 3 sleeping for 100 ms.
Task 4 sleeping for 100 ms.
Task 5 sleeping for 100 ms.
Task 6 sleeping for 100 ms.
Task 7 sleeping for 100 ms.
Task 8 sleeping for 100 ms.
Task 9 sleeping for 100 ms.
Finished time-consuming task.
Task 3 stopping.
Task 0 stopping.
Task 1 stopping.
Task 2 stopping.
Task 9 stopping.
Task 4 stopping.
Task 5 stopping.
Task 6 stopping.
Task 7 stopping.
Task 8 stopping.
总耗时:103 ms

可以看到,​​my_bg_task​​ 实际是异步非阻塞执行的 👍 :

  • 异步:因为每个任务不必等待其结果就可以开始下一个任务,即;

// 异步
Task 0 sleeping for 100 ms.
Task 1 sleeping for 100 ms.
...

// 同步
Task 0 sleeping for 100 ms.
Task 0 stopping.
Task 1 sleeping for 100 ms.
Task 1 stopping.
...

  • 非阻塞:每个任务之间可以快速切换,不必等待其他任务完成才切换,这个例子表现在:
  • 任务 0-9 以乱序方式 stop
  • ​Finished time-consuming task.​​​ 与 ​​Task x stopping.​​ 的打印顺序只与任务各自的运行 (sleep) 时间有关,与源代码的声明执行顺序无关。只有任务之间快速切换才能做到这一点。回顾官网的例子:10 个任务的 sleep 时间线性递减 (​​let millis = 1000 - 50 * i;​​),从 6 个任务开始小于主线程 sleep 任务的时间(750 ms),而等待 10 个任务执行的语句 ​​for handle in handles { ... }​​ 显然位于 ​​std::thread::sleep​​ 之后,所以任务之间非阻塞执行的话,打印结果为 sleep 时间越短的任务先完成,时间越长的任务后完成,总耗时为任务中的最长耗时:

Task 0 sleeping for 1000 ms.
Task 1 sleeping for 950 ms.
Task 2 sleeping for 900 ms.
Task 3 sleeping for 850 ms.
Task 4 sleeping for 800 ms.
Task 5 sleeping for 750 ms.
Task 6 sleeping for 700 ms.
Task 7 sleeping for 650 ms.
Task 8 sleeping for 600 ms.
Task 9 sleeping for 550 ms.
Task 9 stopping.
Task 8 stopping.
Task 7 stopping.
Task 6 stopping.
Finished time-consuming task.
Task 5 stopping.
Task 4 stopping.
Task 3 stopping.
Task 2 stopping.
Task 1 stopping.
Task 0 stopping.
总耗时:1001 ms // 非常完美

一般情况下,对于 async block/fn 你至少有以下一些做法:

  1. 对 async block/fn 调用​​.await​​ 来等待结果;
  2. 对可列举的少数 Future 调用​​join!​​ 或者 ​​select!​​ 来同时等待多个结果 或者 等待多个分支的第一个结果;
  3. 对大量 Future 调用 join 或者 select 一类支持传入 Vec / iter 参数类型的函数,比如这个例子中的​​for handle in handles { ... }​​ 部分就可以改写成 ​​futures::future::join_all(handles).await;​​ ;
  4. 把 async block/fn 变成任务,然后调用​​Runtime::block_on​​ (等价地,对任务 await)来执行许多任务。

容易犯的错误是,希望异步非阻塞时,对所有 async block/fn 进行了 await,而没有进行任务化处理(即 把 Future 通过 spwan 函数转化成任务):

use std::time::Instant;
use tokio::time::{sleep, Duration};

#[tokio::main]
async fn main() {
let now = Instant::now();

let mut handles = Vec::with_capacity(10);
for i in 0..10 {
handles.push(my_bg_task(i)); // 没有把 Future 变成任务
}

std::thread::sleep(Duration::from_millis(120));
println!("Finished time-consuming task.");

for handle in handles {
handle.await; // 而且每个 handle 必须执行完才能执行下一个 handle
}
println!("总耗时:{} ms", now.elapsed().as_millis());
}

async fn my_bg_task(i: u64) {
let millis = 100;
println!("Task {} sleeping for {} ms.", i, millis);
sleep(Duration::from_millis(millis)).await;
println!("Task {} stopping.", i);
}

运行结果:同步阻塞

Finished time-consuming task.
Task 0 sleeping for 100 ms.
Task 0 stopping.
Task 1 sleeping for 100 ms.
Task 1 stopping.
Task 2 sleeping for 100 ms.
Task 2 stopping.
Task 3 sleeping for 100 ms.
Task 3 stopping.
Task 4 sleeping for 100 ms.
Task 4 stopping.
Task 5 sleeping for 100 ms.
Task 5 stopping.
Task 6 sleeping for 100 ms.
Task 6 stopping.
Task 7 sleeping for 100 ms.
Task 7 stopping.
Task 8 sleeping for 100 ms.
Task 8 stopping.
Task 9 sleeping for 100 ms.
Task 9 stopping.
总耗时:1130 ms


或者像这样:

use std::time::Instant;
use tokio::time::{sleep, Duration};

#[tokio::main]
async fn main() {
let now = Instant::now();

let mut handles = Vec::with_capacity(10);
for i in 0..10 {
handles.push(my_bg_task(i)); // 没有把 Future 变成任务
}

std::thread::sleep(Duration::from_millis(120));
println!("Finished time-consuming task.");

futures::future::join_all(handles).await; // 但是 join_all 会等待所有 Future 并发执行完
println!("总耗时:{} ms", now.elapsed().as_millis());
}

async fn my_bg_task(i: u64) {
let millis = 100;
println!("Task {} sleeping for {} ms.", i, millis);
sleep(Duration::from_millis(millis)).await;
println!("Task {} stopping.", i);
}

运行结果:异步阻塞

Finished time-consuming task.
Task 0 sleeping for 100 ms.
Task 1 sleeping for 100 ms.
Task 2 sleeping for 100 ms.
Task 3 sleeping for 100 ms.
Task 4 sleeping for 100 ms.
Task 5 sleeping for 100 ms.
Task 6 sleeping for 100 ms.
Task 7 sleeping for 100 ms.
Task 8 sleeping for 100 ms.
Task 9 sleeping for 100 ms.
Task 0 stopping.
Task 1 stopping.
Task 2 stopping.
Task 3 stopping.
Task 4 stopping.
Task 5 stopping.
Task 6 stopping.
Task 7 stopping.
Task 8 stopping.
Task 9 stopping.
总耗时:221 ms


P.S. 关于代码中 ​​std::thread::sleep​​ 和 ​​tokio::time::sleep​​ 的区别,参考这篇文章 Async: What is blocking? (by Alice Ryhl) 。