import pandas as pd
from deepctr.inputs import SparseFeat, VarLenSparseFeat
from preprocess import gen_data_set, gen_model_input
from sklearn.preprocessing import LabelEncoder
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.models import Model
from deepmatch.models import *
from deepmatch.utils import sampledsoftmaxloss
# 以movielens数据为例,取200条样例数据进行流程演示
data = pd.read_csvdata = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",
"gender", "age", "occupation", "zip", ]
SEQ_LEN = 50
negsample = 0
# 1. 首先对于数据中的特征进行ID化编码,然后使用 `gen_date_set` and `gen_model_input`来生成带有用户历史行为序列的特征数据
features = ['user_id', 'movie_id', 'gender', 'age', 'occupation', 'zip']
feature_max_idx = {}
for feature in features:
lbe = LabelEncoder()
data[feature] = lbe.fit_transform(data[feature]) + 1
feature_max_idx[feature] = data[feature].max() + 1
user_profile = data[["user_id", "gender", "age", "occupation", "zip"]].drop_duplicates('user_id')
item_profile = data[["movie_id"]].drop_duplicates('movie_id')
user_profile.set_index("user_id", inplace=True)
user_item_list = data.groupby("user_id")['movie_id'].apply(list)
train_set, test_set = gen_data_set(data, negsample)
train_model_input, train_label = gen_model_input(train_set, user_profile, SEQ_LEN)
test_model_input, test_label = gen_model_input(test_set, user_profile, SEQ_LEN)
# 2. 配置一下模型定义需要的特征列,主要是特征名和embedding词表的大小
embedding_dim = 16
user_feature_columns = [SparseFeat('user_id', feature_max_idx['user_id'], embedding_dim),
SparseFeat("gender", feature_max_idx['gender'], embedding_dim),
SparseFeat("age", feature_max_idx['age'], embedding_dim),
SparseFeat("occupation", feature_max_idx['occupation'], embedding_dim),
SparseFeat("zip", feature_max_idx['zip'], embedding_dim),
VarLenSparseFeat(SparseFeat('hist_movie_id', feature_max_idx['movie_id'], embedding_dim,
embedding_name="movie_id"), SEQ_LEN, 'mean', 'hist_len'),
]
item_feature_columns = [SparseFeat('movie_id', feature_max_idx['movie_id'], embedding_dim)]
# 3. 定义一个YoutubeDNN模型,分别传入用户侧特征列表`user_feature_columns`和物品侧特征列表`item_feature_columns`。然后配置优化器和损失函数,开始进行训练。
K.set_learning_phase(True)
model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=5, user_dnn_hidden_units=(64, 16))
# model = MIND(user_feature_columns,item_feature_columns,dynamic_k=True,p=1,k_max=2,num_sampled=5,user_dnn_hidden_units=(64,16),init_std=0.001)
model.compile(optimizer="adagrad", loss=sampledsoftmaxloss) # "binary_crossentropy")
history = model.fit(train_model_input, train_label, # train_label,
batch_size=256, epochs=1, verbose=1, validation_split=0.0, )
# 4. 训练完整后,由于在实际使用时,我们需要根据当前的用户特征实时产生用户侧向量,并对物品侧向量构建索引进行近似最近邻查找。这里由于是离线模拟,所以我们导出所有待测试用户的表示向量,和所有物品的表示向量。
test_user_model_input = test_model_input
all_item_model_input = {"movie_id": item_profile['movie_id'].values, "movie_idx": item_profile['movie_id'].values}
# 以下两行是deepmatch中的通用使用方法,分别获得用户向量模型和物品向量模型
user_embedding_model = Model(inputs=model.user_input, outputs=model.user_embedding)
item_embedding_model = Model(inputs=model.item_input, outputs=model.item_embedding)
# 输入对应的数据拿到对应的向量
user_embs = user_embedding_model.predict(test_user_model_input, batch_size=2 ** 12)
# user_embs = user_embs[:, i, :] i in [0,k_max) if MIND
item_embs = item_embedding_model.predict(all_item_model_input, batch_size=2 ** 12)
print(user_embs.shape)
print(item_embs.shape)
# 5. [可选的]如果有安装faiss库的同学,可以体验以下将上一步导出的物品向量构建索引,然后用用户向量来进行ANN查找并评估效果
test_true_label = {line[0]:[line[2]] for line in test_set}
import numpy as np
import faiss
from tqdm import tqdm
from deepmatch.utils import recall_N
index = faiss.IndexFlatIP(embedding_dim)
# faiss.normalize_L2(item_embs)
index.add(item_embs)
# faiss.normalize_L2(user_embs)
D, I = index.search(user_embs, 50)
s = []
hit = 0
for i, uid in tqdm(enumerate(test_user_model_input['user_id'])):
try:
pred = [item_profile['movie_id'].values[x] for x in I[i]]
filter_item = None
recall_score = recall_N(test_true_label[uid], pred, N=50)
s.append(recall_score)
if test_true_label[uid] in pred:
hit += 1
except:
print(i)
print("recall", np.mean(s))
print("hr", hit / len(test_user_model_input['user_id']))