Greatest Common Increasing Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3460 Accepted Submission(s): 1092
Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
Input Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output output print L - the length of the greatest common increasing subsequence of both sequences.
Sample Input 1 5 1 4 2 5 -12 4 -12 1 2 4
Sample Output 2
Source ACM暑期集训队练习赛(二) 代码:动态规划求最长增长公共序列 下面展示的是压缩空间的lcs,由于不需要记录顺序,所以这样写,较为简便,如果要记录路径只需要将lcs[]--->换成lcs[][], 然后maxc,变为lcs[][]的上一行即可!
1 //增长lcs algorithm
2 #include<stdio.h>
3 #include<string.h>
4 #define maxn 505
5 int aa[maxn],bb[maxn];
6 int lcs[maxn];
7 int main()
8 {
9 int test,na,nb,i,j,maxc,res;
10 scanf("%d",&test);
11 while(test--)
12 {
13 scanf("%d",&na);
14 for(i=1;i<=na;i++)
15 scanf("%d",aa+i);
16 scanf("%d",&nb);
17 for(j=1;j<=nb;j++)
18 scanf("%d",bb+j);
19 memset(lcs,0,sizeof(lcs));
20 for(i=1;i<=na;i++)
21 {
22 maxc=0;
23 for(j=1;j<=nb;j++)
24 {
25 if(aa[i]==bb[j]&&lcs[j]<maxc+1)
26 lcs[j]=maxc+1;
27 if(aa[i]>bb[j]&&maxc<lcs[j])
28 maxc=lcs[j];
29 }
30 }
31 res=0;
32 for(i=1;i<=nb;i++)
33 if(res<lcs[i])res=lcs[i];
34 printf("%d\n",res);
35 if(test) putchar(10);
36 }
37 return 0;
38 }
编程是一种快乐,享受代码带给我的乐趣!!!