一:项目介绍

    该项目最终实现的功能很简单,手指在触摸屏左滑(下一张图片),右滑(上一张图片)

    1.1软硬件资源

    硬件:pc机,ARM Cortex-A9开发板

    软件:linux 操作系统

    1.3项目流程

        本项目主要分为三大模块:

        一:LCD驱动编写

        二:I2C驱动编写

        三:使用I2C读取触摸屏上的数据,判断是向左或者向右,再控制lcd进行图片的显示

   大体流程图如下所示:


数码相框(LCD、I2C)_#define

二:项目环境搭建

  2.1安装交叉环境编译器 4.5.1,dnw软件

  2.2烧写uboot


三:LCD裸板驱动的编写

    在编写lcd驱动前先看一下电路图:

数码相框(LCD、I2C)_数据_02

  可以观察到 LCD1由45根线来控制,主要配置的寄存器是24根RGB以及TOU1 EINT10  以及VDEN VYNC HSYNC VCLK驱动;

在核心板中找到网标,找出相应的寄存器;

数码相框(LCD、I2C)_数据_03

编写lcd可大致分为如下几步:

第一步:配置 OUT1 EINT10 以及24根RGB

第二步:看时序图配置相关寄存器

第三步:配置窗口寄存器

3.1 lcd控制器

    Exynos4412的LCD控制器可以通过编程支持不同LCD屏的要求,例如行和列像素数,数据总线宽度,接口时序和刷新频率等。

LCD控制器的主要作用,是将定位在系统存储器中的显示缓冲区中的LCD图像数据传送到外部LCD驱动器,并产生必要的控制信号,

例如RGB_VSYNC,RGB_HSYNC, RGB_VCLK等

数码相框(LCD、I2C)_#define_04

由上图可知:LCD控制器的构成主要由VSFR,VDMA,VPRCS , VTIME和视频时钟产生器几个模块组成;


(1)VSFR由121个可编程控制器组,一套gammaLUT寄存器组(包括64个寄存器),一套i80命令寄存器组(包括12个寄存器)和5块256*32调色板存储器组成,主要用于对lcd控制器进行配置。

(2)VDMA是LCD专用的DMA传输通道,可以自动从系统总线上获取视频数据传送到VPRCS,无需CPU干涉。

(3)VPRCS收到数据后组成特定的格式(如16bpp或24bpp),然后通过数据接口(RGB_VD, VEN_VD, V656_VD or SYS_VD)传送到外部LCD屏上。

(4)VTIME模块由可编程逻辑组成,负责不同lcd驱动器的接口时序控制需求。VTIME模块产生 RGB_VSYNC, RGB_HSYNC, RGB_VCLK, RGB_VDEN,VEN_VSYNC等信号。

3.2 lcd接口信号

数码相框(LCD、I2C)_3c_05

数码相框(LCD、I2C)_3c_06

其中主要的RGB接口信号:

(1)LCD_HSYNC:行同步信号,表示一行数据的开始,LCD控制器在整个水平线(整行)数据移入LCD驱动器后,插入一个LCD_HSYNC信号;

(2)LCD_VSYNC: 帧同步信号,表示一帧数据的开始,LCD控制器在一个完整帧显示完成后立即插入一个LCD_VSYNC信号,开始新一帧的显示;VSYNC信号出现的频率表示一秒钟内能显示多少帧图像,称为“显示器的频率”

(3)LCD_VCLK:像素时钟信号,表示正在传输一个像素的数据;

(4)LCD_VDEN:数据使能信号;

(5) LCD_VD[23:0]: LCD像素数据输出端口

3.3、RGB信号的时序

数码相框(LCD、I2C)_数据_07

(1)、相关参数说明

VBPD(vertical back porch):表示在一帧图像开始时,垂直同步信号以后的无效的行数。

VFBD(vertical front porch):表示在一帧图像结束后,垂直同步信号以前的无效的行数。

VSPW(vertical sync pulse width):表示垂直同步脉冲的宽度,用行数计算。

HBPD(horizontal back porch):表示从水平同步信号开始到一行的有效数据开始之间的VCLK的个数。

HFPD(horizontal front porth):表示一行的有效数据结束到下一个水平同步信号开始之间的VCLK的个数。

HSPW(horizontal sync pulse width):表示水平同步信号的宽度,用VCLK计算。

(2)、帧的传输过程

VSYNC信号有效时,表示一帧数据的开始,信号宽度为(VSPW +1)个HSYNC信号周期,即(VSPW +1)个无效行;

VSYNC信号脉冲之后,总共还要经过(VBPD+ 1)个HSYNC信号周期,有效的行数据才出现; 所以,在VSYNC信号有效之后,还要经过(VSPW +1  + VBPD + 1)个无效的行;

随即发出(LINEVAL+ 1)行的有效数据;

最后是(VFPD + 1)个无效的行。

(3)、行中像素数据的传输过程

HSYNC信号有效时,表示一行数据的开始,信号宽度为(HSPW+ 1)个VCLK信号周期,即(HSPW +1)个无效像素;

HSYNC信号脉冲之后,还要经过(HBPD +1)个VCLK信号周期,有效的像素数据才出现;

随后发出(HOZVAL+1)个像素的有效数据;

最后是(HFPD +1)个无效的像素。

(4)、将VSYNC、HSYNC、VCLK等信号的时间参数设置好之后,并将帧内存的地址告诉LCD控制器,它即可自动地发起DMA传输从帧内存中得到图像数据,最终在上述信号的控制下RGB数据出现在数据总线VD[23:0]上。用户只需要把要显示的图像数据写入帧内存中。


3.4、lcd相关寄存器设置说明

(1)设置LCD的RGB接口,只需要将其设置为2即可。同时将其IO口设置成为内部上拉,且将其驱动能力设置为最强代码如下:

GPF0CON = 0x22222222;                                    

GPF1CON = 0x22222222;

GPF2CON = 0x22222222;

GPF3CON &= ~(0xffff);

GPF3CON |= 0x2222;

/*max driver strength*/

GPF0DRV = 0xfffffff;

GPF1DRV = 0xfffffff;

GPF2DRV = 0xfffffff;

GPF3DRV &= ~0xff;

GPF3DRV |= 0xff;


(2)设置LCD相关时钟寄存器

这一步主要设置选择LCD时钟输入源为MPLL,且不对其进行分频,同时设置LCDBLK_CFG使其使用FIMD接口,且设置LCDBLK_CFG2使其PWM输出使能;

(4)设置VIDCONx,设置接口类型,时钟分频,极性以及使能LCD控制器等

VIDCON0:这一个寄存器主要设置接口类型和时钟分频,这里仅仅设置了其时钟分频值,由于我们的MPLL为800MHZ,所以这里设置值,根据手册进行计算,要得到33.3MHZ左右的像素时钟;

 VIDCON0 = (1 << 17)|(23 <<6)|3;

VIDCON1:主要设置时钟信号,需不需要翻转,以及触发方式;

VIDTCONx:用来设置时序和长宽等参数,这里就主要设置VBPD(vertical back porch)、 VFBD(vertical frontporch)、VSPW(vertical sync pulse width)、HBPD(horizontal backporch)、 HFPD(horizontal sync pulse width)等参数

VIDTCON0取值过程,VIDTCON0设置帧同步时序

数码相框(LCD、I2C)_#define_08

数码相框(LCD、I2C)_3c_09

VIDTCON0 = (22 << 16) | (21 << 8) | (0);


VIDTCON1取值过程,VIDTCON1设置像素同步时序。

数码相框(LCD、I2C)_3c_10

VIDTCON1 = (35 << 16) | (209 << 8) | (9);



数码相框(LCD、I2C)_3c_11

  VIDTCON2

数码相框(LCD、I2C)_数据_12

VIDTCON2 = (479 << 11) | 799;

(5)设置WINCON0寄存器,即设置数据格式。

Exynos4412的LCD控制器有overlay功能,它支持5个window。这里只使用window0,设置其代码RGB模式为24bit(A888)且使能window0;

WINCON0 = (1 << 22) | (1 << 15) | (11 << 2) | 1;

(6)设置VID0SD0A/B/C,即设置Window0的坐标系

配置VIDW00ADD0B0和VIDW00ADD1B0,设置framebuffer的地址;

(7)配置SHADOWCON和WINCHMAP2、选择使能DMA通道0。由于我们使用的是Window0,所以需要使能DMA通道0;

(8)最后设置VIDCON0低两位使能LCD

VIDCON0 |= 1 | (1 << 1);

下面是Tiny4412 LCD裸板驱动具体代码:


数码相框(LCD、I2C)_#define_13数码相框(LCD、I2C)_3c_14


 1 #define LCD_BASE 0x11C00000
2
3 #define VIDCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0000))
4 #define VIDCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0004))
5 #define VIDCON2 (*(volatile unsigned int *)(LCD_BASE + 0x0008))
6 #define VIDCON3 (*(volatile unsigned int *)(LCD_BASE + 0x000C))
7 #define VIDTCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0010))
8 #define VIDTCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0014))
9 #define VIDTCON2 (*(volatile unsigned int *)(LCD_BASE + 0x0018))
10 #define VIDTCON3 (*(volatile unsigned int *)(LCD_BASE + 0x001C))
11 #define WINCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0020))
12 #define WINCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0024))
13 #define WINCON2 (*(volatile unsigned int *)(LCD_BASE + 0x0028))
14 #define WINCON3 (*(volatile unsigned int *)(LCD_BASE + 0x002C))
15 #define WINCON4 (*(volatile unsigned int *)(LCD_BASE + 0x0030))
16 #define SHADOWCON (*(volatile unsigned int *)(LCD_BASE + 0x0034))
17 #define WINCHMAP2 (*(volatile unsigned int *)(LCD_BASE + 0x003C))
18 #define VIDOSD0A (*(volatile unsigned int *)(LCD_BASE + 0x0040))
19 #define VIDOSD0B (*(volatile unsigned int *)(LCD_BASE + 0x0044))
20 #define VIDOSD0C (*(volatile unsigned int *)(LCD_BASE + 0x0048))
21 #define VIDOSD1A (*(volatile unsigned int *)(LCD_BASE + 0x0050))
22 #define VIDOSD1B (*(volatile unsigned int *)(LCD_BASE + 0x0054))
23 #define VIDOSD1C (*(volatile unsigned int *)(LCD_BASE + 0x0058))
24 #define VIDOSD1D (*(volatile unsigned int *)(LCD_BASE + 0x005C))
25 #define VIDOSD2A (*(volatile unsigned int *)(LCD_BASE + 0x0060))
26 #define VIDOSD2B (*(volatile unsigned int *)(LCD_BASE + 0x0064))
27 #define VIDOSD2C (*(volatile unsigned int *)(LCD_BASE + 0x0068))
28 #define VIDOSD2D (*(volatile unsigned int *)(LCD_BASE + 0x006C))
29 #define VIDOSD3A (*(volatile unsigned int *)(LCD_BASE + 0x0070))
30 #define VIDOSD3B (*(volatile unsigned int *)(LCD_BASE + 0x0074))
31 #define VIDOSD3C (*(volatile unsigned int *)(LCD_BASE + 0x0078))
32 #define VIDOSD4A (*(volatile unsigned int *)(LCD_BASE + 0x0080))
33 #define VIDOSD4B (*(volatile unsigned int *)(LCD_BASE + 0x0084))
34 #define VIDOSD4C (*(volatile unsigned int *)(LCD_BASE + 0x0088))
35 #define VIDW00ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00A0))
36 #define VIDW00ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00A4))
37 #define VIDW00ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20A0))
38 #define VIDW01ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00A8))
39 #define VIDW01ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00AC))
40 #define VIDW01ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20A8))
41 #define VIDW02ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00B0))
42 #define VIDW02ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00B4))
43 #define VIDW02ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20B0))
44 #define VIDW03ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00B8))
45 #define VIDW03ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00BC))
46 #define VIDW03ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20B8))
47 #define VIDW04ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00C0))
48 #define VIDW04ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00C4))
49 #define VIDW04ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20C0))
50 #define VIDW00ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00D0))
51 #define VIDW00ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00D4))
52 #define VIDW00ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20D0))
53 #define VIDW01ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00D8))
54 #define VIDW01ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00DC))
55 #define VIDW01ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20D8))
56 #define VIDW02ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00E0))
57 #define VIDW02ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00E4))
58 #define VIDW02ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20E0))
59 #define VIDW03ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00E8))
60 #define VIDW03ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00EC))
61 #define VIDW03ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20E8))
62 #define VIDW04ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00F0))
63 #define VIDW04ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00F4))
64 #define VIDW04ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20F0))
65 #define VIDW00ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0100))
66 #define VIDW01ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0104))
67 #define VIDW02ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0108))
68 #define VIDW03ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x010C))
69 #define VIDW04ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0110))
70 #define VIDINTCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0130))
71 #define VIDINTCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0134))
72 #define W1KEYCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0140))
73 #define VIDW0ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x021C))
74 #define VIDW0ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0220))
75 #define VIDW1ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x0224))
76 #define VIDW1ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0228))
77 #define VIDW2ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x022C))
78 #define VIDW2ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0230))
79 #define VIDW3ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x0234))
80 #define VIDW3ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0238))
81 #define VIDW4ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x023C))
82 #define VIDW4ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0240))
83
84 #endif

lcd.h



  1 #include "lcd.h"
2 #define RGB888(r, g, b) (((r) << 16) | ((g) << 8) | (b))
3
4 void lcd_init(void);
5 void clean_screen(unsigned long *fb, int w, int h);
6
7 int main(void)
8 {
9 fb = ADDR0;
10 lcd_init();
11 clean_screen(fb, 800, 480);
12 }
13
14 void clean_screen(unsigned long *fb, int w, int h)
15 {
16 int i, j;
17 for (i = 0; i < h; i ++) {
18 for (j = 0; j < w; j ++) {
19 fb[i * w + j] = RGB888(255, 0, 0);
20 }
21 }
22 }
23
24 void lcd_init(void)
25 {
26 /*
27 *<Exyons 4412 datasheet pg138 pg141 pg144 pg147> *
28 * GPF0CON : [31:0] : 0x2
29 * GPF1CON : [31:0] : 0x2
30 * GPF2CON : [31:0] : 0x2
31 * GPF3CON : [31:0] : 0x2
32 * */
33
34 //定义IO引脚功能为RGB接口
35 GPF0CON = 0x22222222;
36 GPF1CON = 0x22222222;
37 GPF2CON = 0x22222222;
38 GPF3CON &= ~(0xffff);
39 GPF3CON |= 0x2222;
40
41 //max driver strebgh----
42 GPF0DRV = 0xffffffff;
43 GPF1DRV = 0xffffffff;
44 GPF2DRV = 0xffffffff;
45 GPF3DRV &= ~0xff;
46 GPF3DRV |= 0xff;
47 /*
48 *<Exyons 4412 datasheet pg526>
49 *CLK_DIV_LCD:
50 * [3:0]:FIMD0_RATIO 0
51 * SCLK_FIMD0 = MOUTFIMD0/(FIMD0_RATIO + 1)
52 * = MOUTFIMD0/1 = 800MHz
53 * MOUTFIMD0 == SCLKmpll_user_t == 800MHz <Exyons 4412 datasheet pg453> LCD0_BLK
54 * */
55
56 CLK_DIV_LCD &= ~0xf;
57 /*
58 *<Exyons 4412 datasheet pg501>
59 *CLK_SRC_LCD0:
60 * [3:0]:FIMD0_SEL 0110 ===> SCLKmpll_user_t 选择时钟源为SCLKmpll_user_t
61 *
62 * */
63 CLK_SRC_LCD0 &= ~0xf;
64 CLK_SRC_LCD0 |= 6;
65 //LCD0_SYS_PWR_REG == 7 Don't use
66
67
68 /*<Exyons 4412 datasheet pg1799>
69 *Using the display controller data, you can select one of the above data paths by setting LCDBLK_CFG Register
70 *(0x1001_0210). For more information, refer to the "System Others" manual.
71 *
72 *
73 * <Exyons 4412 datasheet pg880>
74 * LCDBLK_CFG:
75 * [1] : FIMD of LBLK0 Bypass Selection 1 : FIMD Bypass 使用FIMD接口
76 *
77 * LCDBLK_CFG :
78 * [0]:MIE0_DISPON 1 : PWM outpupt enable
79 *
80 *
81 * */
82 LCDBLK_CFG |= 1 << 1; //set FIMD
83 LCDBLK_CFG2 |= 1;
84
85 /*
86 *<Exyons 4412 datasheet pg1869>
87 *VIDCON0:
88 * [13:6]: CLKVAL_F //设置lcd时钟分频系数
89 *
90 * VCLK == 33.3Mhz <S700-AT070TN92 pg14> DCLK Frequency ===> Type : 33.3Mhz
91 * VCLK = FIMD * SCLK/(CLKVAL+1)
92 * VCLK = 800000000 / (CLKVAL + 1)
93 * 33300000 = 800000000 /(CLKVAL + 1)
94 * CLKVAL + 1 = 24.02
95 * CLKVAL = 23
96 * */
97
98 //设置接口类型及时钟分频 33.3MHZ (配置时钟分频系数)
99 VIDCON0 = (1 << 17) | (23 << 6) | 3; /*(1 << 17)非常重要 不配制会出现色差*/
100 //VIDCON0 = (23 << 6) | 3;
101 /*
102 *<Exyons 4412 datasheet pg1870 pg1848(时序)> <S700-AT070TN92 pg13(时序)>
103 *VIDTCON1:
104 * [5]:IVSYNC ===> 1 : Inverted(反转)
105 * [6]:IHSYNC ===> 1 : Inverted(反转)
106 * [7]:IVCLK ===> 1 : Fetches video data at VCLK rising edge (下降沿触发)
107 * [10:9]:FIXVCLK ====> 01 : VCLK running
108 * */
109 /*VIDCON1主要设置像表时钟信号一直存在,且高电平有效,
110 而IHSYNC=1,极性反转IVSYNC=1,极性反转,这是由于S07的时序图中VSYNC和
111 HSYNC都是低脉冲有效,而Exynos4412芯片手册时序图,VSYNC 和HSYNC都是高脉冲有效
112 ,所以需要反转*/
113 VIDCON1 = (1 << 9) | (1 << 7) | (1 << 5) | (1 << 6); //配置时序相关
114
115 /*
116 *<Exyons 4412 datasheet pg1874 pg1848(时序)> <S700-AT070TN92 pg13(时序)>
117 *VIDTCON0:
118 * [23:16]: VBPD + 1 <------> tvpw (1 - 20) 13
119 * [15:8]: VFPD + 1 <------> tvfp 22
120 * [7:0]: VSPW + 1 <------> tvb - tvpw = 23 - 13 = 10
121 * */
122 /*VIDTCONx用来设置时序和长宽等参数,这里就主要设置VBPD(vertical back porch)、
123 VFBD(vertical fro ntporch)、VSPW(vertical sync pulse width)、
124 HBPD(horizontal backporch)、 HFPD(horizontal sync pul se width)等参数*/
125 VIDTCON0 = (10 << 16) | (21 << 8) | (12); //配置时序间隔时间 (VIDTCON0 VIDTCON1)
126
127 /*<Exyons 4412 datasheet pg1874 pg1848(时序)> <S700-AT070TN92 pg13(时序)>
128 *VIDTCON1:
129 * [23:16]: HBPD + 1 <------> thpw (1 - 40) 36
130 * [15:8]: HFPD + 1 <------> thfp 210
131 * [7:0]: HSPW + 1 <------> thb - thpw = 46 - 36 = 10
132 */
133 VIDTCON1 = (35 << 16) | (209 << 8) | (9);
134
135 /*
136 *<Exyons 4412 datasheet pg1875>
137 *
138 *HOZVAL = (Horizontal display size) – 1 and LINEVAL = (Vertical display size) – 1.
139 * Horizontal(水平) display size : 800
140 *Vertical(垂直) display size : 480
141 * */
142 VIDTCON2 = (479 << 11) | 799;
143
144 //win0
145 //#ifdef BPP565
146 /*
147 *<Exyons 4412 datasheet pg1877>
148 *WINCON0:
149 * [16]:Specifies Half-Word swap control bit. 1 = Enables swap
150 * [5:2]: Selects Bits Per Pixel (BPP) mode for Window image : 0101 ===> 16BPP
151 * [1]:Enables/disables video output 1 = Enables
152 *
153 * */
154 // WINCON0 = (1 << 16) | (5 << 2) | 1;
155
156 /*
157 *<Exyons 4412 datasheet pg1895>
158 *VIDOSD0C:Specifies the Window Size (窗口尺寸 单位为word)
159 *
160 *
161 * */
162 // VIDOSD0C = 480 * 800 >> 1;
163 //#else
164 /*
165 *<Exyons 4412 datasheet pg1877>
166 *WINCON0:
167 * [5:2]: Selects Bits Per Pixel (BPP) mode for Window image : 1011 ===> 24BPP
168 * [1]:Enables/disables video output 1 = Enables
169 *
170 * */
171 /*Exynos4412的LCD控制器有overlay功能,它支持5个window。
172 这里只使用window0,设置其代码RGB模式为24bit,(A888)且使能window0
173 */
174 WINCON0 = (1 << 22) | (1 << 15) | (11 << 2) | 1;//配置窗口0颜色数据格式,使能视频数据输出
175
176 /*
177 *<Exyons 4412 datasheet pg1895>
178 *VIDOSD0C:Specifies the Window Size (窗口尺寸 单位为word)
179 *
180 *
181 * */
182 VIDOSD0C = 480 * 800; //windows size
183 //#endif
184
185 //SHADOWCON &= ~(1 << 5); Don't use
186
187 /*
188 *<Exyons 4412 datasheet pg1891 pg1801>
189 *[0]: Enables Channel 0. 1 = Enables
190 * */
191 /*配置SHADOWCON和WINCHMAP2、选择使能DMA通道0,
192 由于我们使用的是Window0,所以需要使能DMA通道0
193 */
194 SHADOWCON |= 1; //选择相应通道
195
196
197 /*
198 *<Exyons 4412 datasheet pg1894 pg1801>
199 *[18:16] Selects Channel 0's channel. ===> 001 = Window 0
200 *[2:0] Selects Window 0's channel. ===> 001 = Channel 0
201 *
202 *
203 * */
204 WINCHMAP2 &= ~(7 << 16);//选择通道与窗口
205 WINCHMAP2 |= 1 << 16;
206 WINCHMAP2 &= ~7;
207 WINCHMAP2 |= 1;
208
209 /*
210 *<Exyons 4412 datasheet pg1895>
211 *VIDOSD0A: LCD左上角坐标
212 *VIDOSD0B: LCD右下角坐标
213 */
214
215 VIDOSD0A = 0;
216 VIDOSD0B = (799 << 11) | 479;
217
218 /*
219 *<Exyons 4412 datasheet pg1902>
220 * VIDW00ADD0B0 : window0 frame buffer 起始地址
221 * VIDW00ADD1B0 : window0 frame buffer 结束地址
222 * */
223 VIDW00ADD0B0 = FRAMEBUFFER00;
224 VIDW00ADD1B0 = FRAMEBUFFER00 + VIDOSD0C * 4;
225 VIDW00ADD2 = 800;
226 /*
227 * <Exyons 4412 datasheet pg1869>
228 * Display On: ENVID and ENVID_F are set to "1".
229 * [0]:ENVID ===> 1 = Enables
230 * [1]:ENVID_F ===> 1 = Enables
231 * */
232 }


页面频率计算公式:

数码相框(LCD、I2C)_3c_15


1 Frame_Rate = 1/[{(VSPW + 1) + (VBPD + 1) + (LIINEVAL + 1) + (VFPD + 1)} * {(HSPW + 1) + (    HBPD + 1) + (HFPD + 1) + (HOZVAL + 1)} * {(CLKVAL + 1)/(Frequency of Clock source)}]
2
3 50 = 1 / [{10 + 13 + 480 + 22} * {20 + 26 + 800 + 210} * X / 800M]
4 50 = 1 / [525 * 1056 * X / 800M]
5 1 = 50 * 525 * 1056 * X / 800M
6 800M = 50 * 525 * 1056 * X
7 X = 800M / (50 * 525 * 1056)
8 X = 800M / 27720000
9 X = 28.8



 四:I2C裸板驱动驱动编写

4.1 I2C总线介绍

I2C总线有两条总线线路,一条是串行数据线(SDA),一条是串行时钟线(SCL)。SDA负责数据传输,SCL负责数据传输的时钟同步。I2C设备通过这两条总线连接到处理器的I2C总线控制器上。I2C总线最主要的特点就是其简单性、有效性以及支持多主控,其中任何能进行发送和接收的的设备都可以成为主控设备。主控设备能控制信号的传输和时钟平率,当然,在同一时间内只能有一个主控设备占用总线;

与其他总线相比,I2C总线有很多重要的特点:

主要特点:

(1)每一个连接到总线的设备都可以通过唯一的设备地址单独访问

(2)串行的8位双向数据传输,位速率在标准模式下可达到100kb/s;快速模式下可以达到400kb/s;告诉模式下可以达到3.4Mb/s

(3)总线长度最长7.6m左右

(4)片上滤波器可以增加抗干扰能力,保证数据的完成传输

(5)连接到一条I2C总线上的设备数量只受到最大电容400pF的限制

(6)它是一个多主机系统,在一条总线上可以同时有多个主机存在,通过冲突检测方式和延时等待防止数据不被破坏。同一时间只能有一个主机占用总线

IIC总线在传输数据的过程中有3种类型的信号:开始信号、结束信号、和应答信号

开始信号(S): 当SCL为高电平时,SDA由高电平向低电平跳变,表示将要开始传输数据

结束信号(P):当SCL为高电平时,SDA由低电平向高电平跳变,表示结束传输数据

响应信号(ACK): 从机接收到8位数据后,在第9个周期,拉低SDA电平,表示已经收到数据。这个信号称为应答信号

下图

数码相框(LCD、I2C)_3c_16

主机:IIC总线中发送命令的设备,对于ARM处理器来说,主机就是IIC控制器

从机:接受命令的设备

一个典型的I2C通信的数据帧格式如下图所示:

  Write:在写入时,I2C主控设备先发起起始位(S),抢占总线,然后,发送7位设备地址和1位0,表示对设备的写入,接着就是向设备传送数据

数码相框(LCD、I2C)_数据_17


在读取时,稍微复杂点,因为总线的数据传输方向要改变,其流程总结如下:

(1)I2C主控设备发送起始位(S),抢占总线

(2)发送7位的设备地址和1位0,表示对设备的写入

(3)向设备写入要读取的寄存器地址

(4)再次发送起始位(S)

(5)发送7位设备地址和1位1,表示设备的读取

(6)从设备读取数据

无论要读取还是写入,都必须先写



数码相框(LCD、I2C)_数据_18

4.2 I2C总线寄存器介绍

  I2C总线控制器的结构如下图

数码相框(LCD、I2C)_#define_19

其中,PCLK是系统的外设时钟,SCL,SDA对应I2C总线的信号,控制器主要包括如下4个寄存器:

(1)I2CCON——I2C总线控制器,可以设置总线控制器的开启,关闭,中断以及总线的分频器;

(2)I2CSTAT——可控制总线的状态,包括发送、接收、主/ 从应答等状态;

(3)I2CADD——I2C总线地址寄存器,一个完整的的I2C总线控制器要求有4种工作模式:主设备发送,主设备接收,从设备发送,从设备接收;

(4)I2CDS——I2C数据接收、发送寄存器;

4.3 I2C总线gpio及寄存器的配置

从电电路图可知:lcd用到的是SDA2、SCL2

数码相框(LCD、I2C)_数据_20

 找到lcd接到底板的电路,查看SCL2对应的网标

数码相框(LCD、I2C)_数据_21

数码相框(LCD、I2C)_3c_22

再找到底板连到核心板的网标,找到对应的gpio(gpd1_2 gpd1_3)

数码相框(LCD、I2C)_数据_23

数码相框(LCD、I2C)_3c_24

下面是I2C具体的寄存器配置

数码相框(LCD、I2C)_3c_25

数码相框(LCD、I2C)_#define_26

数码相框(LCD、I2C)_数据_27数码相框(LCD、I2C)_数据_28

五:利用I2C读取触摸屏数据,控制lcd

由电路图可知,tiny4412开发板的触摸屏是由FT5206GE1这个芯片控制,触摸屏所产生的数据都放在该芯片的寄存器,因此我们只需要读它里面的值就可以了

数码相框(LCD、I2C)_数据_29

数码相框(LCD、I2C)_数据_30

 由电路图我们还可以看出,触摸屏中断为EINT14,因此当我们触碰屏的时候就会发生中断,通过网标我们可以找到触摸屏的中断号:

通过datasheet我们可以找到触摸屏中断号为 62

数码相框(LCD、I2C)_#define_31

 对应的gpio为:gpx1_6

数码相框(LCD、I2C)_3c_32

接下来找到对应的寄存器进行配置:

下面代码就是通过I2C读取触摸屏的数据,从而控制lcd进行显示:

数码相框(LCD、I2C)_#define_13数码相框(LCD、I2C)_3c_14


#ifndef _LCD_H
#define _LCD_H
void (*udelay)(int ) = 0xc3e04fec;
void iic_master_read_buff(unsigned char slave_addr, char *data, int len);
void iic_init();
void iic_dest();
void ts_handle();
static int codate[5];

void iic_init();
void images_write_to_buff(unsigned int height, unsigned int width, char *, unsigned long addr);
void memcpy(unsigned char *dest, unsigned char *src, unsigned int len);
void init_table(unsigned long *addr);
void irq_init();
void enable_mmu();
void init_images();
void show_next();
void show_pre();
void do_irq();

extern unsigned long vector_start;
unsigned long space;
unsigned char *tmp;
unsigned char *fb;
#endif

lcd.h

数码相框(LCD、I2C)_#define_13数码相框(LCD、I2C)_3c_14


#ifndef __REGS_H
#define __REGS_H

#define FRAMEBUFFER00 0x5f000000
#define ADDR0 0x5f000000
#define ADDR1 0x60000000
#define ADDR2 0x68000000

#define GPD1CON (*(volatile unsigned long *)0x114000C0)
#define GPD1PUD (*(volatile unsigned long *)0x114000C8)
#define I2CCON1 (*(volatile unsigned long *)0x13870000)
#define I2CADD1 (*(volatile unsigned long *)0x13870008)
#define I2CSTAT1 (*(volatile unsigned long *)0x13870004)
#define I2CDS1 (*(volatile unsigned long *)0x1387000C)
#define I2CLC1 (*(volatile unsigned long *)0x13870010)

#define ICCICR_CPU0 (*(volatile unsigned long *)0x10480000)
#define ICCPMR_CPU0 (*(volatile unsigned long *)0x10480004)
#define ICDDCR (*(volatile unsigned long *)0x10490000)
#define ICDIPR15_CPU0 (*(volatile unsigned long *)0x1049043C)
#define ICDIPTR15_CPU0 (*(volatile unsigned long *)0x1049083C)
#define ICDISER1_CPU0 (*(volatile unsigned long *)0x10490104)
#define ICDSGIR (*(volatile unsigned long *)0x10490f00)
#define ICCIAR_CPU0 (*(volatile unsigned long *)0x1048000C)
#define ICCEOIR_CPU0 (*(volatile unsigned long *)0x10480010)

#define GPX1CON (*(volatile unsigned long *)0x11000C20)

#define EXT_INT41_CON (*(volatile unsigned long *)0x11000E04)
#define EXT_INT41_MASK (*(volatile unsigned long *)0x11000F04)
#define EXT_INT41_PEND (*(volatile unsigned long *)0x11000F44)


#define printf(...) (((int (*)(const char *, ...))0xc3e114d8)(__VA_ARGS__))

#define GPX3CON (*(volatile unsigned long *)0x11000c60)
#define GPX3DAT (*(volatile unsigned long *)0x11000c64)
#define GPD0CON (*(volatile unsigned long *)0x110000a0)
#define GPD0DAT (*(volatile unsigned long *)0x110000a4)

#define ICCICR_CPU0 (*(volatile unsigned long *)0x10480000)
#define ICCPMR_CPU0 (*(volatile unsigned long *)0x10480004)
#define ICDDCR (*(volatile unsigned long *)0x10490000)
#define ICDIPR16_CPU0 (*(volatile unsigned long *)0x10490440)
#define ICDIPTR16_CPU0 (*(volatile unsigned long *)0x10490840)
#define ICDISER2_CPU0 (*(volatile unsigned long *)0x10490108)
#define ICDSGIR (*(volatile unsigned long *)0x10490f00)
#define ICCIAR_CPU0 (*(volatile unsigned long *)0x1048000C)
#define ICCEOIR_CPU0 (*(volatile unsigned long *)0x10480010)

#define EXT_INT43_CON (*(volatile unsigned long *)0x11000E0C)
#define EXT_INT43_MASK (*(volatile unsigned long *)0x11000F0C)
#define EXT_INT43_PEND (*(volatile unsigned long *)0x11000F4C)

#define CLK_DIV_LCD (*(volatile unsigned int *)0x1003c534)
#define CLK_SRC_MASK_LCD (*(volatile unsigned int *)0x1003c334)
#define CLK_GATE_IP_LCD (*(volatile unsigned int *)0x1003c934)
#define CLK_SRC_LCD0 (*(volatile unsigned int *)0x1003c234)

#define GPF0CON (*(volatile unsigned int *)0x11400180)
#define GPF1CON (*(volatile unsigned int *)0x114001a0)
#define GPF2CON (*(volatile unsigned int *)0x114001c0)
#define GPF3CON (*(volatile unsigned int *)0x114001e0)
#define GPF0DRV (*(volatile unsigned int *)0x1140018c)
#define GPF1DRV (*(volatile unsigned int *)0x114001ac)
#define GPF2DRV (*(volatile unsigned int *)0x114001cc)
#define GPF3DRV (*(volatile unsigned int *)0x114001ec)

#define LCDBLK_CFG (*(volatile unsigned int *)0x10010210)
#define LCDBLK_CFG2 (*(volatile unsigned int *)0x10010214)

#define LCD_BASE 0x11C00000

#define VIDCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0000))
#define VIDCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0004))
#define VIDCON2 (*(volatile unsigned int *)(LCD_BASE + 0x0008))
#define VIDCON3 (*(volatile unsigned int *)(LCD_BASE + 0x000C))
#define VIDTCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0010))
#define VIDTCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0014))
#define VIDTCON2 (*(volatile unsigned int *)(LCD_BASE + 0x0018))
#define VIDTCON3 (*(volatile unsigned int *)(LCD_BASE + 0x001C))
#define WINCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0020))
#define WINCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0024))
#define WINCON2 (*(volatile unsigned int *)(LCD_BASE + 0x0028))
#define WINCON3 (*(volatile unsigned int *)(LCD_BASE + 0x002C))
#define WINCON4 (*(volatile unsigned int *)(LCD_BASE + 0x0030))
#define SHADOWCON (*(volatile unsigned int *)(LCD_BASE + 0x0034))
#define WINCHMAP2 (*(volatile unsigned int *)(LCD_BASE + 0x003C))
#define VIDOSD0A (*(volatile unsigned int *)(LCD_BASE + 0x0040))
#define VIDOSD0B (*(volatile unsigned int *)(LCD_BASE + 0x0044))
#define VIDOSD0C (*(volatile unsigned int *)(LCD_BASE + 0x0048))
#define VIDOSD1A (*(volatile unsigned int *)(LCD_BASE + 0x0050))
#define VIDOSD1B (*(volatile unsigned int *)(LCD_BASE + 0x0054))
#define VIDOSD1C (*(volatile unsigned int *)(LCD_BASE + 0x0058))
#define VIDOSD1D (*(volatile unsigned int *)(LCD_BASE + 0x005C))
#define VIDOSD2A (*(volatile unsigned int *)(LCD_BASE + 0x0060))
#define VIDOSD2B (*(volatile unsigned int *)(LCD_BASE + 0x0064))
#define VIDOSD2C (*(volatile unsigned int *)(LCD_BASE + 0x0068))
#define VIDOSD2D (*(volatile unsigned int *)(LCD_BASE + 0x006C))
#define VIDOSD3A (*(volatile unsigned int *)(LCD_BASE + 0x0070))
#define VIDOSD3B (*(volatile unsigned int *)(LCD_BASE + 0x0074))
#define VIDOSD3C (*(volatile unsigned int *)(LCD_BASE + 0x0078))
#define VIDOSD4A (*(volatile unsigned int *)(LCD_BASE + 0x0080))
#define VIDOSD4B (*(volatile unsigned int *)(LCD_BASE + 0x0084))
#define VIDOSD4C (*(volatile unsigned int *)(LCD_BASE + 0x0088))
#define VIDW00ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00A0))
#define VIDW00ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00A4))
#define VIDW00ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20A0))
#define VIDW01ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00A8))
#define VIDW01ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00AC))
#define VIDW01ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20A8))
#define VIDW02ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00B0))
#define VIDW02ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00B4))
#define VIDW02ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20B0))
#define VIDW03ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00B8))
#define VIDW03ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00BC))
#define VIDW03ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20B8))
#define VIDW04ADD0B0 (*(volatile unsigned int *)(LCD_BASE + 0x00C0))
#define VIDW04ADD0B1 (*(volatile unsigned int *)(LCD_BASE + 0x00C4))
#define VIDW04ADD0B2 (*(volatile unsigned int *)(LCD_BASE + 0x20C0))
#define VIDW00ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00D0))
#define VIDW00ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00D4))
#define VIDW00ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20D0))
#define VIDW01ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00D8))
#define VIDW01ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00DC))
#define VIDW01ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20D8))
#define VIDW02ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00E0))
#define VIDW02ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00E4))
#define VIDW02ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20E0))
#define VIDW03ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00E8))
#define VIDW03ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00EC))
#define VIDW03ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20E8))
#define VIDW04ADD1B0 (*(volatile unsigned int *)(LCD_BASE + 0x00F0))
#define VIDW04ADD1B1 (*(volatile unsigned int *)(LCD_BASE + 0x00F4))
#define VIDW04ADD1B2 (*(volatile unsigned int *)(LCD_BASE + 0x20F0))
#define VIDW00ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0100))
#define VIDW01ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0104))
#define VIDW02ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0108))
#define VIDW03ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x010C))
#define VIDW04ADD2 (*(volatile unsigned int *)(LCD_BASE + 0x0110))
#define VIDINTCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0130))
#define VIDINTCON1 (*(volatile unsigned int *)(LCD_BASE + 0x0134))
#define W1KEYCON0 (*(volatile unsigned int *)(LCD_BASE + 0x0140))
#define VIDW0ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x021C))
#define VIDW0ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0220))
#define VIDW1ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x0224))
#define VIDW1ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0228))
#define VIDW2ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x022C))
#define VIDW2ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0230))
#define VIDW3ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x0234))
#define VIDW3ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0238))
#define VIDW4ALPHA0 (*(volatile unsigned int *)(LCD_BASE + 0x023C))
#define VIDW4ALPHA1 (*(volatile unsigned int *)(LCD_BASE + 0x0240))

#endif

regs.h



  1 #include "lcd.h"
2 #include "regs.h"
3 #include "images.h"
4
5 int main(void)
6 {
7 *(unsigned long *)0x47000000 = do_irq;
8 lcd_init();
9 irq_init();
10 init_images();
11 enable_mmu();
12 memcpy(0x0, vector_start, 0x1000);
13 }
14
15 void images_write_to_buff(unsigned int height, unsigned int width, char *images, unsigned long addr )
16 {
17 int i, j;
18 unsigned char *data;
19 fb = addr;
20 data = images;
21 for(i = 0; i < height; i++) {
22 for(j = 0; j < width; j++) {
23 HEADER_PIXEL(data, (fb + (i * width + j) * 4)); //以每个像素点读去数据
24 }
25 }
26
27 }
28
29 /*将图片信息加载进来*/
30 void init_images()
31 {
32 int i;
33 char *head_data[10] = {header_data0, header_data1, header_data2, header_data3,
34 header_data4, header_data5, header_data6, header_data7,
35 header_data8, header_data9};
36 space = 0x1000000;
37 tmp = ADDR0;
38
39 for(i = 0; i < 10; i++) {
40 images_write_to_buff(480, 800, head_data[i], tmp);
41 tmp += space;
42 }
43
44 tmp = ADDR0;
45 }
46
47 void show_next()
48 {
49 if(tmp >= ADDR2) //判断是否到达最后一张图片
50 tmp = ADDR0;
51 else
52 tmp += space;
53
54 VIDW00ADD0B0 = tmp; //framebuff start addr
55 VIDW00ADD1B0 = tmp + VIDOSD0C * 4; //frambuff end addr
56 VIDW00ADD2 = 800;
57 }
58
59 void show_pre()
60 {
61 if(tmp <= ADDR1) //判断是否到达第一张图片
62 tmp = ADDR2;
63 else
64 tmp -= space;
65
66 VIDW00ADD0B0 = tmp;
67 VIDW00ADD1B0 = tmp + VIDOSD0C * 4;
68 VIDW00ADD2 = 800;
69 }
70
71 void do_irq()
72 {
73 #if 1
74 unsigned long irq = 0;
75
76 if(EXT_INT41_PEND & (1 << 6))//if interrupt occur
77 {
78 EXT_INT41_PEND |= (1 << 6);//clean interrupt
79
80 ts_handle(); // handle interrupt func
81 udelay(5000);
82 }
83 #else
84 unsigned long data = ICCIAR_CPU0;
85 unsigned int irq = data & 0x3ff;
86 unsigned int cpu = (data >> 10) & 0x7;
87 ICCEOIR_CPU0 = irq | (cpu << 10);
88
89 if(64 == irq) {
90 if(EXT_INT43_PEND & (0x1 << 3)) {
91 EXT_INT43_PEND |= (0x1 << 3);
92 show_next();
93 printf("next picture\n");
94 }
95 if (EXT_INT43_PEND & (0x1 << 5)) {
96 EXT_INT43_PEND |= (0x1 << 5);
97 show_pre();
98 printf("pre picture\n");
99 }
100
101 }
102 #endif
103 }
104
105 void iic_init()
106 {
107 GPD1CON &= ~(0xff << 8);//Xi2c1SDA/GPD1_2 ; Xi2c1SCL/GPD1_3
108 GPD1CON |= (0x22 << 8);//GPD1_2 --> 0x2 = I2C_1_SDA; GPD1_3 --> 0x2 = I2C_1_SCL
109 GPD1PUD = 0;//Disables Pull-up/Pull-down
110
111 I2CCON1 = 0x2 | (1 << 5) | (1 << 6);//100000000/512/3==65kb
112 // I2CADD1 = 0xc0;//slave address
113 I2CSTAT1 = (1 << 4);//Enables Rx/Tx
114 I2CLC1 = 0x7;//0111 Enables Filter;15 clocks
115 }
116
117 void iic_dest()
118 {
119 I2CCON1 = 0;
120 I2CSTAT1 = 0;
121 I2CADD1 = 0;
122 I2CLC1 = 0;
123 }
124
125 void iic_master_read_buff(unsigned char slave_addr, char *data, int len)
126 {
127 iic_dest();
128 iic_init();
129
130 int cnt = 0;
131 while(I2CSTAT1 & (1))//if (write) START signal generation
132 {
133 I2CSTAT1 = 0X90;
134 udelay(100);
135 printf("i am I2CSTATZZ1 1\n");
136 }
137
138 I2CCON1 |= (1 << 7);//I2C-bus acknowledge enable bit
139 I2CDS1 = slave_addr; //Slave address
140 I2CSTAT1 = 0Xb0;//1011 Master receive mode ;(Read) Busy (If Read; Enables Rx/Tx
141
142 while(I2CSTAT1 & 1)//(Read) Busy If Read
143 {
144 printf("i am I2CSTAT1 2\n");
145 }
146 udelay(100);
147
148 char tmp = I2CDS1;//第一个数据,为传过去的地址
149 I2CCON1 &= ~(1 << 4);//No interrupt is pending (If Read). Clears pending condition and resumes the operation (If Write).
150 udelay(100);
151
152 while(cnt < len)
153 {
154 if((I2CCON1 & 0x10))
155 {
156 data[cnt] = I2CDS1; //read read a byte data of each
157 I2CCON1 &= ~(1 << 4); //No interrupt is pending (If Read). Clears pending condition and resumes the operation (If Write).
158 udelay(100);
159 cnt++;
160 }
161 }
162
163 I2CSTAT1 = 0X90;//1001 Master receive mode;(Read) Not busy (If Read); enables Rx/Tx; h
164 }
165
166 void ts_handle()
167 {
168 unsigned short x, y;
169 unsigned char buf[32];
170 static int m = 0;
171
172 iic_master_read_buff(0x70, buf, 31); //0x70为触摸屏地址
173 x = (buf[4] & 0x0f) << 8 | buf[5];
174
175 if(m < 5)
176 codate[m++] = x;
177
178 /*judge left or right of gesture*/
179 else {
180 if(codate[2] < codate[4]) { //right
181 printf("move right\n");
182 show_next();
183 }
184
185 else if(codate[2] > codate[4]) { //left
186 printf("move left\n");
187 show_pre();
188 }
189
190 /*clean codate */
191 for(m = 0; m < 5; m++) {
192 codate[m] = 0;
193 }
194 m = 0;
195 udelay(250000);
196 }
197 }
198
199 void irq_init()
200 {
201 #if 1
202 //step 1: enable cpu cpsr
203 __asm__ __volatile__(
204 "mrs r0, cpsr\n"
205 "bic r0, r0, #0x80\n"
206 "msr cpsr, r0\n"
207 ::: "r0"
208 );
209
210 //step 2: GIC NO.62
211 ICCICR_CPU0 = 1;//global enable interrupt (total switch)
212 ICCPMR_CPU0 = 0xff;//This register provides an interrupt priority filter. Only interrupts with higher priority than the value in this registercan be signaled to the processor
213
214 ICDDCR = 1;//This register enables forwarding of pending interrupts to the CPU interfaces
215
216 /*一共有1024个中断源,只有160个中断号*/
217 //id = 62. 一个ICDIPR 控制4个中断,62 / 4 = 15 ...2, so ICDIPR=15
218 ICDIPR15_CPU0 = ~(0xff << 16);//the zero is the highest priority
219 ICDIPTR15_CPU0 = (1 << 16);//0x1 ---> for cpu0
220 ICDISER1_CPU0 = (1 << 30);// enable interrupt 0
221
222 //step 3: set gpio
223 GPX1CON &= ~(0xf << 24);
224 GPX1CON |= (0xf << 24);//xeint14 <==> gpx1_6 ---->0xF = EXT_INT41[6]
225
226 //step 4:set ext_int
227 EXT_INT41_CON &= ~(0x7 << 24);
228 EXT_INT41_CON |= (0x3 << 24);//falling edge; low level
229 EXT_INT41_MASK &= ~(0x1 << 6);//enable extint41_6
230
231 #else
232 //step 1: cpu permit interrupt
233 __asm__ __volatile__(
234 "mrs r0, cpsr\n"
235 "bic r0,r0, #0x80\n"
236 "msr cpsr, r0\n"
237 :::"r0"
238 );
239
240 //step 2: GIC (cgi) enable
241 ICCICR_CPU0 = 1; //总开关
242 ICCPMR_CPU0 =0xff;//总优先级
243 ICDDCR = 1; //本中断开关
244
245 //KEY
246 ICDIPR16_CPU0 = (1 << 0);//本中断优先级
247 ICDIPTR16_CPU0 = (1 << 0);//目标cpu
248 ICDISER2_CPU0 = (1 << 0);//启用本中断
249
250 //step 3: Xeint
251 EXT_INT43_CON = (0x2 << 12);
252 EXT_INT43_CON = (0x2 << 20);
253 EXT_INT43_MASK = 0;
254
255 //step 4: set gpio
256 GPX3CON = (0xf << 8);
257 GPX3CON = (0xf << 20);
258
259 //step 5: interrupt source
260 #endif
261 }
262
263 void memcpy(unsigned char *dest, unsigned char *src, unsigned int len)
264 {
265 int i = 0;
266 for(i = 0; i < len; i++) {
267 dest[i] = src[i];
268 }
269 }
270
271 void init_table(unsigned long *addr)
272 {
273 unsigned long va = 0;
274 unsigned long phys = 0;
275
276 //0x40000000-0x80000000 -> 0x40000000-0x80000000
277 for(va = 0x40000000; va < 0x80000000; va += 0x100000) {
278 phys = va;
279 addr[va >> 20] = phys | 2;
280 }
281
282 //0x10000000-0x14000000 -> 0x10000000-0x140000000
283 for(va = 0x10000000; va < 0x14000000; va += 0x100000) {
284 phys = va;
285 addr[va >> 20] = phys | 2;
286 }
287 //0x10000000-0x14000000 -> 0x10000000-0x140000000
288 for(va = 0x0; va < 0x10000000; va += 0x100000) {
289 phys = va + 0x70000000;
290 addr[va >> 20] = phys | 2;
291 }
292
293 }
294
295 void enable_mmu()
296 {
297 /*构建表*/
298 unsigned long addr = 0x50000000;
299 init_table(addr);
300
301 /*打开mmu*/
302 unsigned long mmu = 0;
303 mmu = 1 | (1 << 1) | (1 << 3) | (1 << 8);
304 __asm__ __volatile__ (
305 "mov r0, #3\n"
306 "MCR p15, 0, r0, c3, c0, 0\n"//设置为管理员
307 "MCR p15, 0, %0, c2, c0, 0\n"//设置表的地址
308 "MCR p15, 0, %1, c1, c0, 0\n"//开启mmu
309 :
310 : "r" (addr), "r" (mmu)
311 :
312 );
313
314 }
315
316 void lcd_init(void)
317 {
318 /*
319 *<Exyons 4412 datasheet pg138 pg141 pg144 pg147> *
320 * GPF0CON : [31:0] : 0x2
321 * GPF1CON : [31:0] : 0x2
322 * GPF2CON : [31:0] : 0x2
323 * GPF3CON : [31:0] : 0x2
324 * */
325
326 //定义IO引脚功能为RGB接口
327 GPF0CON = 0x22222222;
328 GPF1CON = 0x22222222;
329 GPF2CON = 0x22222222;
330 GPF3CON &= ~(0xffff);
331 GPF3CON |= 0x2222;
332
333 //max driver strebgh----
334 GPF0DRV = 0xffffffff;
335 GPF1DRV = 0xffffffff;
336 GPF2DRV = 0xffffffff;
337 GPF3DRV &= ~0xff;
338 GPF3DRV |= 0xff;
339 /*
340 *<Exyons 4412 datasheet pg526>
341 *CLK_DIV_LCD:
342 * [3:0]:FIMD0_RATIO 0
343 * SCLK_FIMD0 = MOUTFIMD0/(FIMD0_RATIO + 1)
344 * = MOUTFIMD0/1 = 800MHz
345 * MOUTFIMD0 == SCLKmpll_user_t == 800MHz <Exyons 4412 datasheet pg453> LCD0_BLK
346 * */
347
348 CLK_DIV_LCD &= ~0xf;
349 /*
350 *<Exyons 4412 datasheet pg501>
351 *CLK_SRC_LCD0:
352 * [3:0]:FIMD0_SEL 0110 ===> SCLKmpll_user_t 选择时钟源为SCLKmpll_user_t
353 *
354 * */
355 CLK_SRC_LCD0 &= ~0xf;
356 CLK_SRC_LCD0 |= 6;
357 //LCD0_SYS_PWR_REG == 7 Don't use
358
359
360 /*<Exyons 4412 datasheet pg1799>
361 *Using the display controller data, you can select one of the above data paths by setting LCDBLK_CFG Register
362 *(0x1001_0210). For more information, refer to the "System Others" manual.
363 *
364 *
365 * <Exyons 4412 datasheet pg880>
366 * LCDBLK_CFG:
367 * [1] : FIMD of LBLK0 Bypass Selection 1 : FIMD Bypass 使用FIMD接口
368 *
369 * LCDBLK_CFG :
370 * [0]:MIE0_DISPON 1 : PWM outpupt enable
371 *
372 *
373 * */
374 LCDBLK_CFG |= 1 << 1; //set FIMD
375 LCDBLK_CFG2 |= 1;
376
377 /*
378 *<Exyons 4412 datasheet pg1869>
379 *VIDCON0:
380 * [13:6]: CLKVAL_F //设置lcd时钟分频系数
381 *
382 * VCLK == 33.3Mhz <S700-AT070TN92 pg14> DCLK Frequency ===> Type : 33.3Mhz
383 * VCLK = FIMD * SCLK/(CLKVAL+1)
384 * VCLK = 800000000 / (CLKVAL + 1)
385 * 33300000 = 800000000 /(CLKVAL + 1)
386 * CLKVAL + 1 = 24.02
387 * CLKVAL = 23
388 * */
389
390 //设置接口类型及时钟分频 33.3MHZ (配置时钟分频系数)
391 VIDCON0 = (1 << 17) | (23 << 6) | 3; /*(1 << 17)非常重要 不配制会出现色差*/
392 //VIDCON0 = (23 << 6) | 3;
393 /*
394 *<Exyons 4412 datasheet pg1870 pg1848(时序)> <S700-AT070TN92 pg13(时序)>
395 *VIDTCON1:
396 * [5]:IVSYNC ===> 1 : Inverted(反转)
397 * [6]:IHSYNC ===> 1 : Inverted(反转)
398 * [7]:IVCLK ===> 1 : Fetches video data at VCLK rising edge (下降沿触发)
399 * [10:9]:FIXVCLK ====> 01 : VCLK running
400 * */
401 /*VIDCON1主要设置像表时钟信号一直存在,且高电平有效,
402 而IHSYNC=1,极性反转IVSYNC=1,极性反转,这是由于S07的时序图中VSYNC和
403 HSYNC都是低脉冲有效,而Exynos4412芯片手册时序图,VSYNC 和HSYNC都是高脉冲有效
404 ,所以需要反转*/
405 VIDCON1 = (1 << 9) | (1 << 7) | (1 << 5) | (1 << 6); //配置时序相关
406
407 /*
408 *<Exyons 4412 datasheet pg1874 pg1848(时序)> <S700-AT070TN92 pg13(时序)>
409 *VIDTCON0:
410 * [23:16]: VBPD + 1 <------> tvpw (1 - 20) 13
411 * [15:8]: VFPD + 1 <------> tvfp 22
412 * [7:0]: VSPW + 1 <------> tvb - tvpw = 23 - 13 = 10
413 * */
414 /*VIDTCONx用来设置时序和长宽等参数,这里就主要设置VBPD(vertical back porch)、
415 VFBD(vertical fro ntporch)、VSPW(vertical sync pulse width)、
416 HBPD(horizontal backporch)、 HFPD(horizontal sync pul se width)等参数*/
417 VIDTCON0 = (10 << 16) | (21 << 8) | (12); //配置时序间隔时间 (VIDTCON0 VIDTCON1)
418
419 /*<Exyons 4412 datasheet pg1874 pg1848(时序)> <S700-AT070TN92 pg13(时序)>
420 *VIDTCON1:
421 * [23:16]: HBPD + 1 <------> thpw (1 - 40) 36
422 * [15:8]: HFPD + 1 <------> thfp 210
423 * [7:0]: HSPW + 1 <------> thb - thpw = 46 - 36 = 10
424 */
425 VIDTCON1 = (35 << 16) | (209 << 8) | (9);
426
427 /*
428 *<Exyons 4412 datasheet pg1875>
429 *
430 *HOZVAL = (Horizontal display size) – 1 and LINEVAL = (Vertical display size) – 1.
431 * Horizontal(水平) display size : 800
432 *Vertical(垂直) display size : 480
433 * */
434 VIDTCON2 = (479 << 11) | 799;
435
436 //win0
437 //#ifdef BPP565
438 /*
439 *<Exyons 4412 datasheet pg1877>
440 *WINCON0:
441 * [16]:Specifies Half-Word swap control bit. 1 = Enables swap
442 * [5:2]: Selects Bits Per Pixel (BPP) mode for Window image : 0101 ===> 16BPP
443 * [1]:Enables/disables video output 1 = Enables
444 *
445 * */
446 // WINCON0 = (1 << 16) | (5 << 2) | 1;
447
448 /*
449 *<Exyons 4412 datasheet pg1895>
450 *VIDOSD0C:Specifies the Window Size (窗口尺寸 单位为word)
451 *
452 *
453 * */
454 // VIDOSD0C = 480 * 800 >> 1;
455 //#else
456 /*
457 *<Exyons 4412 datasheet pg1877>
458 *WINCON0:
459 * [5:2]: Selects Bits Per Pixel (BPP) mode for Window image : 1011 ===> 24BPP
460 * [1]:Enables/disables video output 1 = Enables
461 *
462 * */
463 /*Exynos4412的LCD控制器有overlay功能,它支持5个window。
464 这里只使用window0,设置其代码RGB模式为24bit,(A888)且使能window0
465 */
466 WINCON0 = (1 << 22) | (1 << 15) | (11 << 2) | 1;//配置窗口0颜色数据格式,使能视频数据输出
467
468 /*
469 *<Exyons 4412 datasheet pg1895>
470 *VIDOSD0C:Specifies the Window Size (窗口尺寸 单位为word)
471 *
472 *
473 * */
474 VIDOSD0C = 480 * 800; //windows size
475 //#endif
476
477 //SHADOWCON &= ~(1 << 5); Don't use
478
479 /*
480 *<Exyons 4412 datasheet pg1891 pg1801>
481 *[0]: Enables Channel 0. 1 = Enables
482 * */
483 /*配置SHADOWCON和WINCHMAP2、选择使能DMA通道0,
484 由于我们使用的是Window0,所以需要使能DMA通道0
485 */
486 SHADOWCON |= 1; //选择相应通道
487
488
489 /*
490 *<Exyons 4412 datasheet pg1894 pg1801>
491 *[18:16] Selects Channel 0's channel. ===> 001 = Window 0
492 *[2:0] Selects Window 0's channel. ===> 001 = Channel 0
493 *
494 *
495 * */
496 WINCHMAP2 &= ~(7 << 16);//选择通道与窗口
497 WINCHMAP2 |= 1 << 16;
498 WINCHMAP2 &= ~7;
499 WINCHMAP2 |= 1;
500
501 /*
502 *<Exyons 4412 datasheet pg1895>
503 *VIDOSD0A: LCD左上角坐标
504 *VIDOSD0B: LCD右下角坐标
505 */
506
507 VIDOSD0A = 0;
508 VIDOSD0B = (799 << 11) | 479;
509
510 /*
511 *<Exyons 4412 datasheet pg1902>
512 * VIDW00ADD0B0 : window0 frame buffer 起始地址
513 * VIDW00ADD1B0 : window0 frame buffer 结束地址
514 * */
515 VIDW00ADD0B0 = FRAMEBUFFER00;
516 VIDW00ADD1B0 = FRAMEBUFFER00 + VIDOSD0C * 4;
517 VIDW00ADD2 = 800;
518 /*
519 * <Exyons 4412 datasheet pg1869>
520 * Display On: ENVID and ENVID_F are set to "1".
521 * [0]:ENVID ===> 1 = Enables
522 * [1]:ENVID_F ===> 1 = Enables
523 * */
524 }
525
526 __asm__(
527
528 /*异常向量表*/
529 "vector: \n"
530 " b reset\n"
531 " b und\n"
532 " b swi\n"
533 " b pre_abt\n"
534 " b data_abt\n"
535 " .word 0x0\n"
536 " b irq\n"
537 " b fiq\n"
538 "reset:\n"
539 "und:\n"
540 " mov sp, #0x47000000\n"
541 " stmdb sp!, {r0-r12, lr}\n"
542
543 " ldr r3, =0x47000004\n"
544 " ldr r2, [r3]\n"
545 " blx r2\n"
546
547 " mov sp, #0x47000000\n"
548 " ldmdb sp, {r0-r12, pc}^ \n"
549
550 "swi:\n"
551 " mov sp, #0x47000000\n"
552 " stmdb sp!, {r0-r12, lr}^\n"
553
554 " mov sp, #0x47000000\n"
555 " ldmdb sp, {r0-r12, pc}^ \n"
556
557 "pre_abt:\n"
558
559 "data_abt:\n"
560 " mov sp, #0x47000000\n"
561 " sub lr, lr, #4\n"
562 " stmdb sp!, {r0-r12, lr}\n"
563
564 " ldr r3, =0x47000008\n"
565 " ldr r2, [r3]\n"
566 " blx r2\n"
567
568 " mov sp, #0x47000000\n"
569 " ldmdb sp, {r0-r12, pc}^ \n"
570 "irq:\n"
571
572 " mov sp, #0x47000000\n"
573 " sub lr, lr, #4\n"
574 " stmdb sp!, {r0-r12, lr}\n"
575
576 " ldr r3, =0x47000000\n" //跳转到c语言
577 " ldr r2, [r3]\n"
578 " blx r2\n"
579
580 " mov sp, #0x47000000\n"
581 " ldmdb sp, {r0-r12, pc}^ \n"
582
583 "fiq:\n"
584
585 ".global vector_start\n"
586 "vector_start: \n"
587 ".word vector \n "
588
589 );