Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 16630 | Accepted: 6935 |
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7 1 2 2 3 3 4 2 5 4 5 5 6 5 7
Sample Output
2
Hint
One visualization of the paths is:
1 2 3Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +
1 2 3Check some of the routes:
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7
Every pair of fields is, in fact, connected by two routes.
It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.
Source
具体的实现需要在tarjan算法中加一个id数组表示第一条到达第i个点的编号是多少,一开始将tot设为2,就能非常方便的通过^1得到反向边.在对无向图进行tarjan算法处理的时候一定要注意当前走的边是不是上一次走的反向边,也就是不能走回父亲节点.将所有的桥给标出来,然后剩下的边就全在双连通分量里了.枚举每条边,如果当前的边不是桥,就合并边所连的两点,利用并查集维护.最后判断叶子节点:枚举所有的点,如果当前点所在的双连通分量的度数为1,则为叶子节点.
#include <cstdio> #include <stack> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn = 20010; int n,m,fa[maxn],ans,head[maxn],to[maxn],nextt[maxn],tot = 2,from[maxn]; int pre[maxn],low[maxn],dfs_clock,flag[maxn],id[maxn],du[maxn]; stack <int> s; void add(int x,int y) { to[tot] = y; from[tot] = x; nextt[tot] = head[x]; head[x] = tot++; } int find(int x) { if (fa[x] == x) return x; return fa[x] = find(fa[x]); } void tarjan(int u) { pre[u] = low[u] = ++dfs_clock; for (int i = head[u];i;i = nextt[i]) { if (i == (id[u] ^ 1)) continue; int v = to[i]; if (!pre[v]) { id[v] = i; tarjan(v); if (low[v] < low[u]) low[u] = low[v]; if (low[v] > pre[u]) flag[id[v]] = flag[id[v] ^ 1] = 1; } else low[u] = min(low[u],pre[v]); } } void hebing(int x,int y) { int fx = find(x),fy = find(y); if (fx != fy) fa[fx] = fy; } int main() { scanf("%d%d",&n,&m); for (int i = 1; i <= n; i++) fa[i] = i; for (int i = 1; i <= m; i++) { int a,b; scanf("%d%d",&a,&b); add(a,b); add(b,a); } for (int i = 1; i <= n; i++) if (!pre[i]) tarjan(i); for (int i = 2; i < tot; i += 2) if (!flag[i]) hebing(from[i],to[i]); for (int i = 2; i < tot; i += 2) if (flag[i]) { du[find(from[i])]++; du[find(to[i])]++; } for (int i = 1; i <= n; i++) if (find(i) == i && du[find(i)] == 1) ans++; printf("%d\n",(ans + 1) / 2); return 0; }